首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Resolvent sampling based Rayleigh-Ritz method for large-scale nonlinear eigenvalue problems
【24h】

Resolvent sampling based Rayleigh-Ritz method for large-scale nonlinear eigenvalue problems

机译:基于溶剂采样的Rayleigh-Ritz方法求解大规模非线性特征值问题

获取原文
获取原文并翻译 | 示例

摘要

A new algorithm, denoted by RSRR, is presented for solving large-scale nonlinear eigenvalue problems (NEPs) with a focus on improving the robustness and reliability of the solution, which is a challenging task in computational science and engineering. The proposed algorithm utilizes the Rayleigh-Ritz procedure to compute all eigenvalues and the corresponding eigenvectors lying within a given contour in the complex plane. The main novelties are the following. First and foremost, the approximate eigenspace is constructed by using the values of the resolvent at a series of sampling points on the contour, which effectively circumvents the unreliability of previous schemes that using high-order contour moments of the resolvent. Secondly, an improved Sakurai Sugiura algorithm is proposed to solve the projected NEPs with enhancements on reliability and accuracy. The user-defined probing matrix in the original algorithm is avoided and the number of eigenvalues is determined automatically by the provided strategies. Finally, by approximating the projected matrices with the Chebyshev interpolation technique, RSRR is further extended to solve NEPs in the boundary element method, which is typically difficult due to the densely populated matrices and high computational costs. The good performance of RSRR is demonstrated by a variety of benchmark examples and large-scale practical applications, with the degrees of freedom ranging from several hundred up to around one million. The algorithm is suitable for parallelization and easy to implement in conjunction with other programs and software. (C) 2016 Elsevier B.V. All rights reserved.
机译:提出了一种用RSRR表示的新算法,用于解决大规模非线性特征值问题(NEP),重点是提高解决方案的鲁棒性和可靠性,这是计算科学和工程学中的一项艰巨任务。所提出的算法利用瑞利-里兹(Rayleigh-Ritz)过程来计算位于复杂平面中给定轮廓内的所有特征值和相应特征向量。主要的新颖性如下。首先,最重要的是通过在轮廓上的一系列采样点上使用分解剂的值来构造近似特征空间,这有效地避免了以前使用分解剂高阶轮廓矩的方案的不可靠性。其次,提出了一种改进的Sakurai Sugiura算法来解决投影NEP问题,并提高了可靠性和准确性。避免了原始算法中用户定义的探测矩阵,并且通过提供的策略自动确定特征值的数量。最后,通过用Chebyshev插值技术逼近投影矩阵,RSRR进一步扩展为求解边界元方法中的NEP,由于矩阵人口稠密和计算成本高,通常很难实现。 RSRR的良好性能通过各种基准示例和大规模的实际应用得到了证明,其自由度范围从几百到一百万左右。该算法适合并行化,并且易于与其他程序和软件结合实现。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号