首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An unconditionally stable algorithm for generalized thermoelasticity based on operator-splitting and time-discontinuous Galerkin finite element methods
【24h】

An unconditionally stable algorithm for generalized thermoelasticity based on operator-splitting and time-discontinuous Galerkin finite element methods

机译:基于算子分解和时间不连续Galerkin有限元方法的广义热弹性无条件稳定算法

获取原文
获取原文并翻译 | 示例

摘要

An efficient time-stepping algorithm is proposed based on operator-splitting and the space-time discontinuous Galerkin finite element method for problems in the non-classical theory of thermoelasticity. The non-classical theory incorporates three models: the classical theory based on Fourier's law of heat conduction resulting in a hyperbolic-parabolic coupled system, a non-classical theory of a fully-hyperbolic extension, and a combination of the two. The general problem is split into two contractive sub-problems, namely the mechanical phase and the thermal phase. Each sub-problem is discretized using the space-time discontinuous Galerkin finite element method. The sub-problems are stable which then leads to unconditional stability of the global product algorithm. A number of numerical examples are presented to demonstrate the performance and capability of the method. (C) 2016 Elsevier B.V. All rights reserved.
机译:针对非经典热弹性理论中存在的问题,提出了一种基于算子分解和时空不连续Galerkin有限元方法的高效时步算法。非经典理论包含三个模型:基于傅立叶热导定律的经典理论(产生双曲-抛物耦合系统),非经典理论的全双曲扩展,以及两者的结合。一般问题分为两个收缩子问题,即机械阶段和热阶段。使用时空不连续Galerkin有限元方法离散化每个子问题。子问题是稳定的,这随后导致全局乘积算法的无条件稳定性。给出了许多数值示例,以证明该方法的性能和能力。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号