首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Interval and random analysis for structure-acoustic systems with large uncertain-but-bounded parameters
【24h】

Interval and random analysis for structure-acoustic systems with large uncertain-but-bounded parameters

机译:参数不确定但有界的结构声学系统的区间和随机分析

获取原文
获取原文并翻译 | 示例

摘要

For the response analysis of the structure-acoustic system with uncertain-but-bounded parameters, three bounded uncertain models are introduced. One is the bounded random model in which all of the uncertain-but-bounded parameters are described as bounded random variables with well defined probability distribution. The second one is the interval model in which all of the uncertain-but-bounded parameters are described as interval variables due to the limited information. The third one is the bounded hybrid uncertain model in which the interval variables and the bounded random variables exist simultaneously. Based on the parametric Gegenbauer polynomial, which is formulated for bounded random model recently, the Gegenbauer Series Expansion Method (GSEM) is developed for the response prediction of the structure-acoustic system under these three bounded uncertain models. Within GSEM, the response of these three bounded uncertain models of the structure-acoustic system can be approximated by the unified Gegenbauer Series with different values of polynomial parameter. Then, the interval and random analysis for these three bounded uncertain models of the structure-acoustic system are conducted on the basis of Gegenbauer series. Owing to the orthogonal property of Gegenbauer polynomial, the analytical solution of the expectation and variance of Gegenbauer series with respect to the bounded random variables can be readily obtained. The bounds of Gegenbauer series with respect to the interval variables are determined by the Monte Carlo simulation. The GSEM is applied to solve a shell structure-acoustic system under these three bounded uncertain models. Inspired by the convergence behavior of GSEM, the relative improvement criterion is established to estimate the required retained order of Gegenbauer Series for large uncertain problems. The results on numerical examples show that GSEM with the estimated retained order can achieve a prescribed accuracy and good efficiency for structure-acoustic systems with large uncertain-but-bounded parameters. (C) 2016 Elsevier B.V. All rights reserved.
机译:为了对具有不确定但有界参数的结构-声学系统进行响应分析,引入了三个有界不确定模型。一种是有界随机模型,其中所有不确定但有界的参数都被描述为具有明确定义的概率分布的有界随机变量。第二个是区间模型,其中由于信息有限,所有不确定但有界的参数都被描述为区间变量。第三个是有界混合不确定模型,其中区间变量和有界随机变量同时存在。基于最近为有界随机模型制定的参数Gegenbauer多项式,开发了Gegenbauer级数展开法(GSEM)来预测这三种有界不确定模型下结构声学系统的响应。在GSEM中,可以通过具有不同多项式参数值的统一Gegenbauer级数来近似结构声系统的这三个有界不确定模型的响应。然后,在Gegenbauer级数的基础上,对结构声系统的这三个有界不确定模型进行了区间和随机分析。由于Gegenbauer多项式的正交性,可以很容易地获得Gegenbauer级数对有界随机变量的期望和方差的解析解。 Gegenbauer级数相对于区间变量的边界由蒙特卡洛模拟确定。在这三个有界不确定模型下,应用GSEM求解壳体结构声学系统。受GSEM收敛行为的启发,建立了相对改进准则,以估计大不确定性问题所需的Gegenbauer级数保留顺序。数值算例结果表明,具有较大不确定度但有界参数的结构声学系统,估计保留阶数的GSEM可以达到规定的精度和良好的效率。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号