首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Formulation and numerical analysis of a fully-coupled dynamically deforming electromagnetic wire
【24h】

Formulation and numerical analysis of a fully-coupled dynamically deforming electromagnetic wire

机译:全耦合动态变形电磁线的配方与数值分析

获取原文
获取原文并翻译 | 示例

摘要

An electromagnetic beam model is developed for the simulation of actuated electronic textiles. The beam is solved using a nonlinear director-based kinematic description with additional temperature and electric potential fields along its length. The three fields are fully coupled by mutual dependences on the deformation, Lorenz force, back electromotive force, temperature dependent constitutive responses, and the Seebeck effect. Instead of solving Maxwell's equations in full detail, a quasistatic approximation is used to solve the electric potential in the presence of a moving material medium. The current-carrying beam approximation is used to further simplify the solution space for the potential. While this formulation alleviates the spatial and temporal discretization restrictions, the coupled problem is an index-1 semi-explicit Differential Algebraic Equation requiring special treatment. The time dependent problem is solved using different Runge-Kutta methods. Diagonally implicit Runge-Kutta methods and explicit Runge-Kutta methods using implicit solution of the electric potential problem are explored. The finite element model is implemented using the open source package FEniCS, which is able to automatically generate the linearizations of the multiphysics equations required for the implicit solutions. A model problem is constructed with which to test and analyze the physical formulation and numerical solution techniques. The time stepping methods are verified using the convergence orders of the higher-order Runge-Kutta methods. Runtime comparisons show that the explicit methods are generally more computationally efficient than the implicit schemes used for this problem. For the implicit schemes, a staggered solution is significantly faster than a monolithic solution at most time step sizes. However, at very large time steps, such as those that would be used for dynamic relaxation, the monolithic solution can be more efficient than the staggered solution. (C) 2016 Elsevier B.V. All rights reserved.
机译:开发了一种电磁束模型来模拟驱动的电子纺织品。使用基于非线性指向矢的运动学描述来求解束,并在其长度范围内附加温度和电势场。这三个场通过相互依赖于变形,洛伦兹力,反电动势,温度相关的本构响应和塞贝克效应而完全耦合。代替了完全详细地求解麦克斯韦方程组,而是使用拟静态逼近法来求解存在移动材料介质时的电势。载流电子束近似用于进一步简化电位的解空间。尽管此公式减轻了空间和时间离散化的限制,但耦合问题是一个需要特殊处理的指数为1的半显式微分代数方程。时间相关的问题使用不同的Runge-Kutta方法解决。探索了使用隐式求解电势问题的对角隐式Runge-Kutta方法和显式Runge-Kutta方法。使用开源软件包FEniCS实现有限元模型,该软件包能够自动生成隐式解所需的多物理场方程的线性化。构造了一个模型问题,可用来测试和分析物理公式和数值求解技术。使用更高阶的Runge-Kutta方法的收敛阶数验证了时间步进方法。运行时比较显示,显式方法通常比用于此问题的隐式方案在计算效率上更高。对于隐式方案,在大多数时间步长上,交错式解决方案都比单片式解决方案快得多。但是,在非常大的时间步长(例如将用于动态松弛的时间步长)下,单块解决方案可能比交错解决方案更有效。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号