首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media
【24h】

Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media

机译:多物理场断裂中的相场建模。第三部分流体饱和多孔介质在水-孔隙弹性和水力压裂中的裂纹驱动力

获取原文
获取原文并翻译 | 示例

摘要

The prediction of fluid-and moisture-driven crack propagation in deforming porous media has achieved increasing interest in recent years, in particular with regard to the modeling of hydraulic fracturing, the so-called "fracking". Here, the challenge is to link at least three modeling ingredients for (i) the behavior of the solid skeleton and fluid bulk phases and their interaction, (ii) the crack propagation on not a priori known paths and (iii) the extra fluid flow within developed cracks. To this end, a macroscopic framework is proposed for a continuum phase field modeling of fracture in porous media. It provides a rigorous geometric approach to a diffusive crack modeling based on the introduction of a constitutive balance equation for a regularized crack surface and its modular linkage to a Darcy-Biot-type bulk response of hydro-poro-elasticity. The approach overcomes difficulties associated with the computational realization of sharp crack discontinuities, in particular when it comes to complex crack topologies including branching. A modular concept is outlined for linking of the diffusive crack modeling with the hydroporo-elastic response of the porous bulk material. This includes a generalization of crack driving forces from energetic definitions towards threshold-based criteria in terms of the effective stress related to the solid skeleton of a fluid-saturated porous medium. Furthermore, a Poiseuille-type constitutive continuum modeling of the extra fluid flow in developed cracks is suggested based on a deformation-dependent permeability, that is scaled by a characteristic length. This proposed modular model structure is exploited in the numerical implementation by constructing a robust finite element method, based on an algorithmic decoupling of updates for the crack phase field and the state variables of the hydro-poro-elastic bulk response. We demonstrate the performance of the phase field formulation of fracture for a spectrum of model problems of hydraulic fracture. A slight modification of the framework allows the simulation of drying-caused crack patterns in partially saturated capillar-porous media. (C) 2015 Elsevier B.V. All rights reserved.
机译:近年来,对流体和水分驱动的裂纹在变形的多孔介质中传播的预测越来越引起人们的兴趣,特别是在水力压裂的建模方面,即所谓的“压裂”。在这里,挑战在于将至少三种建模成分联系在一起:(i)固体骨架和流体本体相的行为及其相互作用,(ii)裂纹在先验未知路径上的传播,以及(iii)额外的流体流动在发达的裂缝内。为此,提出了用于多孔介质裂缝连续相场建模的宏观框架。它为扩散裂纹建模提供了严格的几何方法,该方法基于引入规则裂纹表面的本构平衡方程及其与水-孔弹性的Darcy-Biot型本体响应的模块化联系。该方法克服了与锋利的裂纹间断的计算实现相关的困难,特别是涉及包括分支的复杂裂纹拓扑时。概述了模块化概念,用于将扩散裂纹模型与多孔散装材料的水孔弹性响应联系起来。这包括根据与流体饱和多孔介质的固体骨架有关的有效应力,从高能定义到基于阈值的准则的裂纹驱动力的概括。此外,建议基于变形相关的渗透率(按特征长度进行标定),对发达裂缝中的额外流体流动进行Poiseuille型本构连续介质建模。基于对裂纹相场和水-孔隙弹性体响应的状态变量进行更新的算法解耦,通过构造鲁棒的有限元方法,在数值实现中利用了这种提议的模块化模型结构。我们针对一系列水力压裂模型问题证明了压裂相场公式的性能。略微修改框架可以模拟在部分饱和的毛细孔介质中干燥引起的裂纹模式。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号