首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >On the treatment of high-frequency issues in numerical simulation for dynamic systems by model order reduction via the proper orthogonal decomposition
【24h】

On the treatment of high-frequency issues in numerical simulation for dynamic systems by model order reduction via the proper orthogonal decomposition

机译:通过适当的正交分解使模型阶数减少来处理动态系统数值模拟中的高频问题

获取原文
获取原文并翻译 | 示例

摘要

A new numerical strategy to remedy high-frequency issues caused by finite element discretization in structural dynamic problems has been proposed. A noteworthy characteristic of this advocated approach is that it is based upon the use of the proper orthogonal decomposition (POD) incorporated in conjunction with implicit or explicit numerically non-dissipative time integration schemes to substantially improve or eliminate undesirable effects due to high-frequency instabilities. Original systems with high-frequency issues are reduced via POD based on an adequate choice of a numerically dissipative scheme so that the resulting reduced systems contain no high-frequency participation. This approach confers the inherent advantages that numerically non-dissipative mechanical integrators, e.g., energy-momentum conserving or variational integrators, can be used to solve the reduced systems, fulfilling the requisite conservation laws in the projected basis and therefore provides a robust simulation. Linear and nonlinear numerical applications are shown to demonstrate the benefits and feasibility of this technique. (C) 2017 Elsevier B.V. All rights reserved.
机译:提出了一种解决结构动力问题中有限元离散化引起的高频问题的新数值策略。此提倡方法的一个值得注意的特征是,它基于使用与隐式或显式数值非耗散时间积分方案结合使用的适当正交分解(POD)的方法,可显着改善或消除由于高频不稳定性引起的不良影响。在适当地选择数值耗散方案的基础上,通过POD可以减少具有高频问题的原始系统,从而使所得的简化系统不包含高频参与。这种方法具有固有的优点,即数值上无耗散的机械积分器(例如能量动量守恒或变分积分器)可用于求解简化系统,并在计划的基础上满足必要的守恒律,因此可提供可靠的仿真。线性和非线性数值应用表明了该技术的好处和可行性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号