首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation
【24h】

Modified Newton methods for solving fully monolithic phase-field quasi-static brittle fracture propagation

机译:修正牛顿法求解完全单相相场准静态脆性裂纹扩展

获取原文
获取原文并翻译 | 示例

摘要

Our goal in this work is to develop and compare modified Newton methods for fully monolithic quasi-static brittle phasefield fracture propagation. In variational phase-field fracture, a smoothed phase-field indicator variable denoting the crack path is coupled to elasticity. Moreover, a crack irreversibility condition is incorporated. To develop a fully monolithic scheme is an extremely challenging task since the underlying problem is non-convex and the Jacobian of Newton's method is indefinite. To split the problem using alternating minimization, thus a partitioned approach, is a possible resort. However, there are good reasons to consider monolithic approaches such as for example robustness and efficiency. Although an error-oriented Newton method can cope with a larger variety of configurations, it appears that this method is not always robust and also not always efficient. Inspired by nonlinear flow problems, as alternative, we develop a modified Newton scheme in which globalization is based on a dynamic modification of the Jacobian matrix rather than utilizing line-search or trust-region strategies. This variation switches smoothly between full Newton and Newton-like steps. In several 2D and 3D numerical examples, all of them with different characteristic features, our modified Newton solver is compared to a backtracking line-search Newton method, another line-search method monitoring the global energy and allowing for negative curvatures, and to already published results of an error-oriented version. These computations also include further modifications of Newton's method and detailed discussions why certain schemes either work or fail. Revisiting all findings, the main outcome of this paper is that the modified Newton scheme with Jacobian modification is currently the only method that works in a robust and efficient way for all provided examples, whereas line-search schemes or the error-oriented scheme show deficiencies for certain configurations. (C) 2017 Elsevier B.V. All rights reserved.
机译:我们这项工作的目标是开发和比较改进的牛顿法,以用于完全单片准静态脆性相场裂缝扩展。在相变场断裂中,表示裂纹路径的平滑相场指示变量与弹性耦合。此外,结合了裂纹不可逆性条件。由于基本问题是非凸的并且牛顿方法的雅可比定律是不确定的,因此开发出一个完整的整体方案是一项极富挑战性的任务。使用交替最小化来解决问题,因此采用分区方法是一种可行的方法。但是,有充分的理由考虑采用整体方法,例如鲁棒性和效率。尽管面向错误的牛顿法可以处理更多的配置,但看来这种方法并不总是健壮的,也不总是高效的。受非线性流动问题的启发,我们开发了一种改进的牛顿方案,其中全球化基于对雅可比矩阵的动态修改,而不是利用线搜索或信任区域策略。这种变化可以在完整的牛顿步骤和类似牛顿的步骤之间平稳切换。在几个均具有不同特征的2D和3D数值示例中,我们将改进的牛顿求解器与回溯线搜索牛顿法,另一种监视全局能量并允许负曲率的线搜索法进行了比较,并且已经发布面向错误的版本的结果。这些计算还包括对牛顿方法的进一步修改,以及对某些方案为何有效或无效的详细讨论。回顾所有发现,本文的主要结果是,对于所有提供的示例,带有雅可比修正的改进牛顿方案是唯一以健壮和有效的方式工作的方法,而线搜索方案或面向错误的方案则显示出不足之处对于某些配置。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号