首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Application of discontinuous Galerkin method to mechanical 2D problem with arbitrary polygonal and very high-order finite elements
【24h】

Application of discontinuous Galerkin method to mechanical 2D problem with arbitrary polygonal and very high-order finite elements

机译:间断Galerkin方法在任意多边形和高阶有限元的二维力学问题中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Discontinuous Galerkin with finite difference rules (DGFD) is applied to mechanical plane stress state problem. The considered domain is discretized by polygonal mesh. The polygonal elements can be for example a hexagon, pentagon or just quadrangle or triangle. They do not have to be convex and a fish mesh, where the elements have fish shapes, is used. When the elements are rectangular then the orthogonality of Chebyshev basis functions can be utilized. In such a case very high-order approximate solution can be obtained. In this work the approximation order exceeds 10 and reaches 60, which in the latter case means 3600 numbers of degrees of freedom in a single element. The paper is illustrated by a benchmark example in which the exact solution is recovered by DGFD method for various meshes. In the "other example the stress concentration is easily recovered by very high-order version of DGFD method. (C) 2017 Elsevier B.V. All rights reserved.
机译:具有有限差分规则(DGFD)的不连续Galerkin被应用于机械平面应力状态问题。所考虑的域通过多边形网格离散化。多边形元素可以是例如六边形,五边形或仅仅是四边形或三角形。它们不必是凸形的,而是使用具有鱼形元素的鱼网。当元素为矩形时,可以利用切比雪夫基函数的正交性。在这种情况下,可以获得非常高阶的近似解。在这项工作中,近似阶数超过10并达到60,这在后一种情况下意味着单个元素中有3600个自由度。本文通过一个基准示例进行了说明,其中通过DGFD方法恢复了各种网格的精确解。在“其他示例”中,可以通过非常高级的DGFD方法轻松恢复应力集中。(C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号