首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >The Reference Point Method, a 'hyperreduction' technique: Application to PGD-based nonlinear model reduction
【24h】

The Reference Point Method, a 'hyperreduction' technique: Application to PGD-based nonlinear model reduction

机译:参考点方法,一种“超简化”技术:在基于PGD的非线性模型简化中的应用

获取原文
获取原文并翻译 | 示例

摘要

A new approximation technique, called Reference Point Method (RPM), is proposed in order to reduce the computational complexity of algebraic operations for constructing reduced-order models in the case of time dependent and/or parametrized nonlinear partial differential equations. Even though model reduction techniques enable one to decrease the dimension of the initial problem in the sense that far fewer degrees of freedom are needed to represent the solution, the complexity of evaluating the nonlinear terms and assembling the low dimensional operator associated with the reduced-order model still scales with the size of the original high-dimensional model. This point can be critical, especially when the reduced-order basis changes throughout the solution strategy as it is the case for model reduction techniques based on Proper Generalized Decomposition (PGD). Based on the concept of spatial, parameter/time reference points and influence patches, the RPM defines a compressed version of the data from which an approximate low-rank separated representation by patch of the operators can be constructed by explicit formulas at low-cost without resorting to SVD-based techniques. An application of the RPM to PGD-based model reduction for a nonlinear parametrized elliptic PDE previously studied by other authors with reduced-basis method and EIM is proposed. It is shown that computational complexity to construct the reduced-order model can be divided in practice by one order of magnitude compared with the classical PGD approach. (C) 2017 Elsevier B.V. All rights reserved.
机译:为了减少代数运算在依赖时间和/或参数化的非线性偏微分方程的情况下构建降阶模型的计算复杂度,提出了一种新的近似技术,称为参考点方法(RPM)。即使模型简化技术使人们可以减小初始问题的维数,也就意味着需要更少的自由度来表示解,但评估非线性项和组装与降阶相关的低维算子的复杂性模型仍会按照原始高维模型的大小进行缩放。这一点很关键,尤其是当降阶基础在整个解决方案策略中发生变化时,尤其是基于基于适当广义分解(PGD)的模型约简技术时,情况尤其如此。基于空间,参数/时间参考点和影响补丁的概念,RPM定义了数据的压缩版本,根据该压缩版本,可以通过显式公式以低成本构建由算子补丁组成的近似低秩分离表示,而无需诉诸基于SVD的技术。提出了RPM在非线性参数化椭圆形PDE的基于PGD的模型约简中的应用,该模型先前已由其他作者使用降基法和EIM研究。结果表明,与传统的PGD方法相比,构造降阶模型的计算复杂度实际上可以分为一个数量级。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号