首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Globally convergent nonlinear 3D inverse model for smart materials with Hessian-based optimization
【24h】

Globally convergent nonlinear 3D inverse model for smart materials with Hessian-based optimization

机译:基于Hessian优化的智能材料的全局收敛非线性3D逆模型

获取原文
获取原文并翻译 | 示例
           

摘要

A globally convergent and fully coupled 3D inverse model for smart materials is presented. In practice, stress and field (electric, magnetic, or temperature) are applied to smart materials whereas strain and flux density (electric, magnetic, or temperature) are measured. We refer to constitutive models that follow this scheme as direct models. In certain design and control situations, however, inverse models are necessary in which the field and stress are found from specified flux density and strain. This inversion typically involves an iterative procedure, which may be prone to convergence issues. An inverse model approach is proposed for arbitrary smart materials. The inversion requirement is a continuous and second order differentiable direct model for any chosen smart material. The approach is globally convergent, which makes it ideal for use in finite element frameworks. The premise of the proposed iterative system model is to constitute a recursive correction formula based on second order approximations of a novel scalar error function which offers a faster convergence rate. A continuation approach is then used to achieve global convergence for arbitrary input parameters. Magnetostrictive Galfenol is chosen to illustrate the effectiveness of the inverse model, and compact analytical derivations of the Jacobian and Hessian matrices are presented. The convergence rate of the proposed approach is superior to that of an existing inverse model. Finally, the inverse model's robustness is demonstrated through integration of the model into a finite-element framework to simulate a magnetostrictive composite plate actuator in full 3D. (C) 2017 Elsevier B.V. All rights reserved.
机译:提出了智能材料的全球收敛和完全耦合的3D逆模型。实际上,应力和场(电,磁或温度)被应用于智能材料,而应变和通量密度(电,磁或温度)被测量。我们将遵循该方案的本构模型称为直接模型。但是,在某些设计和控制情况下,需要逆模型,在该模型中,可以从指定的磁通密度和应变中找到磁场和应力。这种反转通常涉及迭代过程,这可能会导致收敛问题。提出了一种针对任意智能材料的逆模型方法。反演要求是任何选定智能材料的连续和二阶可微直接模型。该方法是全局收敛的,因此非常适合在有限元框架中使用。所提出的迭代系统模型的前提是基于一种新颖的标量误差函数的二阶逼近来构建递归校正公式,该标量误差函数可提供更快的收敛速度。然后使用一种连续方法来实现任意输入参数的全局收敛。选择磁致伸缩Galfenol来说明反模型的有效性,并给出了Jacobian和Hessian矩阵的紧致解析推导。该方法的收敛速度优于现有的逆模型。最后,通过将模型集成到有限元框架中以模拟全3D磁致伸缩复合板致动器,证明了逆模型的鲁棒性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号