...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Design sensitivity analysis for shape optimization based on the Lie derivative
【24h】

Design sensitivity analysis for shape optimization based on the Lie derivative

机译:基于李导数的形状优化设计灵敏度分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The paper presents a theoretical framework for the shape sensitivity analysis of systems governed by partial differential equations. The proposed approach, based on geometrical concepts borrowed from differential geometry, shows that sensitivity of a performance function (i.e. any function of the solution of the problem) with respect to a given design variable can be represented mathematically as a Lie derivative, i.e. the derivative of that performance function along a flow representing the continuous shape modification of the geometrical model induced by the variation of the considered design variable. Theoretical formulae to express sensitivity analytically are demonstrated in detail in the paper, and applied to a nonlinear magnetostatic and a linear elastic problem, following both the direct and the adjoint approaches. Following the analytical approach, one linear system of which only the right-hand side needs be evaluated (the system matrix being known already) has to be solved for each of the design variables in the direct approach, or for each performance functions in the adjoint approach. A substantial gain in computation time is obtained this way compared to a finite difference evaluation of sensitivity, which requires solving a second nonlinear system for each design variable. This is the main motivation of the analytical approach. There is some freedom in the definition of the auxiliary flow that represents the shape modification. We present a method that makes benefit of this freedom to express sensitivity locally as a volume integral over a single layer of finite elements connected to both sides of the surfaces undergoing shape modification. All sensitivity calculations are checked with a finite difference in order to validate the analytic approach. Convergence is analyzed in 2D and 3D, with first and second order finite elements. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文为偏微分方程控制的系统的形状敏感性分析提供了理论框架。基于从微分几何中借用的几何概念,所提出的方法表明,相对于给定设计变量的性能函数(即问题解的任何函数)的灵敏度可以用数学公式表示为李导数,即导数该性能函数沿代表表示考虑的设计变量变化而引起的几何模型的连续形状修改的流的变化。本文详细说明了用于表达灵敏度的理论公式,并遵循直接方法和伴随方法,将其应用于非线性静磁和线性弹性问题。采用分析方法后,必须针对直接设计中的每个设计变量或伴随函数中的每个性能函数,求解仅需要评估右侧的线性系统(系统矩阵已知)。方法。与灵敏度的有限差分评估相比,通过这种方式可以获得可观的计算时间增益,这需要为每个设计变量求解第二个非线性系统。这是分析方法的主要动机。在表示形状修改的辅助流的定义上有一定的自由度。我们提出了一种利用这种自由度的方法,该方法可以将灵敏度局部表示为连接到要进行形状修改的表面两侧的有限元单层上的体积积分。所有灵敏度计算均以有限的差异进行检查,以验证分析方法的有效性。使用一阶和二阶有限元在2D和3D中分析收敛性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号