首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Dual and approximate dual basis functions for B-splines and NURBS - Comparison and application for an efficient coupling of patches with the isogeometric mortar method
【24h】

Dual and approximate dual basis functions for B-splines and NURBS - Comparison and application for an efficient coupling of patches with the isogeometric mortar method

机译:B样条曲线和NURBS的对偶和近似对偶基函数-使用等几何砂浆方法将贴片有效耦合的比较和应用

获取原文
获取原文并翻译 | 示例

摘要

This contribution defines and compares different methods for the computation of dual basis functions for B-splines and Non Uniform Rational B-splines (NURBS). They are intended to be used as test functions for the isogeometric mortar method, but other fields of application are possible, too. Three different concepts are presented and compared. The first concept is the explicit formula for the computation of dual basis functions for NURBS proposed in the work of Carl de Boor. These dual basis functions entail minimal support, i.e., the support of the dual basis functions is equal to the support of the corresponding B-spline basis functions. In the second concept dual basis functions are derived from the inversion of the Gram matrix. These dual basis functions have global support along the interface. The third concept is the use of approximate dual basis functions, which were initially proposed for the use in harmonic analysis. The support of these functions is local but larger than the support of the associated B-spline basis functions. We propose an extension of the approximate dual basis functions for NURBS basis functions. After providing the general formulas, we elaborate explicit expressions for several degrees of spline basis functions. All three approaches are applied in the frame of the mortar method for the coupling of non-conforming NURBS patches. A method which allows complex discretizations with multiple intersecting interfaces is presented. Numerical examples show that the explicitly defined dual basis functions with minimal support severely deteriorate the global stress convergence behavior of the mechanical analysis. This fact is in accordance with mathematical findings in literature, which state that the optimal reproduction degree of arbitrary functions is not possible without extending the support of the dual basis functions. The dual basis functions computed from the inverse of the Gram matrix yield accurate numerical results but the global support yields significantly higher computational costs in comparison to computations of conforming meshes. Only the approximate dual basis functions yield accurate and efficient computations, where neither accuracy nor efficiency is significantly deteriorated in comparison to computations of conforming meshes. All basic cases of T-intersections and star-intersections are studied. Furthermore, an example which combines all basic cases in a complex discretization is given. The applicability of the presented method for the nonlinear case and for shell formulations is shown with the help of one numerical example. (C) 2016 Elsevier B.V. All rights reserved.
机译:该贡献定义并比较了用于计算B样条和非均匀有理B样条(NURBS)的对偶基函数的不同方法。它们打算用作等几何砂浆方法的测试功能,但其他应用领域也是可能的。提出并比较了三种不同的概念。第一个概念是Carl de Boor工作中提出的NURBS对偶基函数计算的显式公式。这些双重基函数需要最小的支持,即双重基函数的支持等于相应的B样条基函数的支持。在第二个概念中,双基函数是从Gram矩阵的求逆中得出的。这些双重功能在界面上具有全局支持。第三个概念是使用近似对偶基函数,该函数最初是为谐波分析而提出的。这些功能的支持是局部的,但大于关联的B样条基函数的支持。我们建议对NURBS基函数进行近似对偶基函数的扩展。在提供了通用公式之后,我们详细阐述了多个样条基函数的显式。这三种方法都应用在砂浆方法的框架中,用于耦合不合格的NURBS贴片。提出了一种允许具有多个相交接口的复杂离散化的方法。数值示例表明,明确定义的具有最小支持的对偶基函数严重恶化了力学分析的整体应力收敛行为。这一事实与文献中的数学发现相符,后者指出,在不扩展对偶基函数支持的情况下,不可能实现任意函数的最佳再现度。从Gram矩阵的逆计算出的对偶基函数产生了精确的数值结果,但与合模网格的计算相比,全局支持产生了显着更高的计算成本。仅近似对偶基函数产生准确而有效的计算,与相符网格的计算相比,准确性和效率均不会显着降低。研究了T型交叉口和星形交叉口的所有基本情况。此外,给出了在复杂离散化中结合所有基本情况的示例。借助一个数值示例,显示了所提出方法在非线性情况和壳配方中的适用性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号