首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Geometrically non-linear static analysis of functionally graded material shells with a discrete double directors shell element
【24h】

Geometrically non-linear static analysis of functionally graded material shells with a discrete double directors shell element

机译:具有离散双导向器壳单元的功能梯度材料壳的几何非线性静态分析

获取原文
获取原文并翻译 | 示例

摘要

A general shell model, including both theories of thin and thick shells, Kirchhoff-Love and Reissner-Mindlin undergoing finite rotations is presented. Based on Higher-order shear theory, where the fiber is cubic plane, the developed model does not need any transverse shear coefficients. The implementation is applicable to the analysis of isotropic and functionally graded shells undergoing fully geometrically nonlinear mechanical response. Material properties of the shells are assumed to be graded in the thickness direction according to a simple power-law and sigmoid distribution. The accuracy and overall robustness of the developed shell element are illustrated through the solution of several non trivial benchmark problems taken from the literature. The effect of the material distribution on the deflections and stresses is analyzed. (C) 2016 Elsevier B.V. All rights reserved.
机译:提出了一个通用的壳模型,包括薄壳和厚壳两个理论,即Kirchhoff-Love和Reissner-Mindlin进行有限旋转。基于纤维为立方平面的高阶剪切理论,开发的模型不需要任何横向剪切系数。该实现方式适用于经历完全几何非线性机械响应的各向同性和功能渐变壳体的分析。假定根据简单的幂律和S形分布,在厚度方向上对壳的材料特性进行分级。通过解决从文献中摘录的几个非平凡基准问题,可以说明已开发壳体元件的精度和整体坚固性。分析了材料分布对挠度和应力的影响。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号