首页> 外文学位 >A simple four-node solid shell element for geometric non-linear static and dynamic analysis.
【24h】

A simple four-node solid shell element for geometric non-linear static and dynamic analysis.

机译:用于几何非线性静态和动态分析的简单四节点固体壳单元。

获取原文
获取原文并翻译 | 示例

摘要

A simple four-node solid shell finite element is developed for geometric non-linear static and dynamic analysis. The solid shell formulation differs from the more common degenerate solid shell formulation. The degenerate solid shell formulation uses rotational angles to describe the kinematics of deformation and requires a constant element thickness during deformation. The solid shell formulation replaces both limitations by using a six-component vector field to describe the locations of the shell mid-surface and outer surfaces (relative to the mid-surface). The vector approach allows thickness deformations. Vector components replace the angular terms thus removing small angle restrictions incurred in the degenerate shell formulation when large rotations are considered.; To accommodate larger displacements and rotations, a geometric non-linear element is developed based on the Hellinger-Reissner principle with an independent strain field. This method requires both geometry-based displacements and assumed strains. The geometry-based displacement field includes internal degrees of freedom so-called bubble functions, which make the element less sensitive to distortion. The choice of assumed strain fields accommodates the deformation modes present in the displacement field, precluding element locking and excluding undesirable spurious kinematic modes.; Following a geometric non-linear static formulation, the capabilities are extended to include dynamic analysis, by conserving energy between successive time steps intervals. An algorithm to obtain incremental time derivatives of the vector components is developed. Time variations of the derivatives are integrated using an averaged acceleration model.; Numerical examples of the finite elements developed herein for both static and dynamic analyses are presented. A series of classic benchmark test cases for both linear and non-linear analyses are analyzed. All elements developed typically show good convergence to either exact or referenced solutions. Extreme skew angles caused some difficulties when converging on a singularity, though.; The vector-based displacement field used in the solid shell element allows larger displacement increments than the degenerate shell approach. Extremely large increments are possible in a single step when performing geometric non-linear static analyses. This research also demonstrates that large increments are allowed when considering dynamic analyses. The solution appears stable at relatively large time steps. As anticipated with larger time steps, though, there is some high-frequency truncation.
机译:开发了一种用于几何非线性静态和动态分析的简单四节点固体壳体有限元。固体壳配方不同于更普通的简并固体壳配方。简并的固体壳配方使用旋转角度来描述变形的运动学,并且在变形过程中需要恒定的元素厚度。固体外壳配方通过使用六分量矢量场来描述外壳中表面和外表面(相对于中表面)的位置,从而取代了两个限制。向量方法允许厚度变形。向量分量取代了角度项,从而消除了在考虑大旋转时简并壳公式中产生的小角度限制。为了适应更大的位移和旋转,基于Hellinger-Reissner原理开发了具有独立应变场的几何非线性元件。此方法需要基于几何的位移和假定的应变。基于几何的位移场包括内部自由度,即所谓的气泡函数,使元素对变形的敏感度降低。假定的应变场的选择适应了位移场中存在的变形模式,排除了元件锁定,并且排除了不希望的虚假运动学模式。遵循几何非线性静态公式,通过节省连续时间步长间隔之间的能量,功能扩展到包括动态分析。开发了一种获取矢量分量增量时间导数的算法。使用平均加速度模型对导数的时间变化进行积分。给出了本文开发的用于静态和动态分析的有限元的数值示例。分析了用于线性和非线性分析的一系列经典基准测试用例。开发的所有元素通常都可以很好地收敛到精确的解决方案或参考的解决方案。但是,当以奇异点收敛时,极端的偏斜角会带来一些困难。实心壳单元中使用的基于矢量的位移场比简并壳法允许更大的位移增量。在执行几何非线性静态分析时,一步就可以实现极大的增量。这项研究还表明,在考虑动态分析时,可以允许较大的增量。该解决方案在相对较大的时间步长下显得稳定。但是,如较大的时间步长所预期的那样,会有一些高频截断。

著录项

  • 作者

    Kemp, Brian Lee.;

  • 作者单位

    University of Maryland College Park.;

  • 授予单位 University of Maryland College Park.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

  • 入库时间 2022-08-17 11:48:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号