首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >On the use of NURBS-based discretizations in the scaled boundary finite element method for wave propagation problems
【24h】

On the use of NURBS-based discretizations in the scaled boundary finite element method for wave propagation problems

机译:基于NURBS的离散化在比例边界有限元方法中求解波传播问题

获取原文
获取原文并翻译 | 示例

摘要

We discuss the application of non-uniform rational B-splines (NURBS) in the scaled boundary finite element method (SBFEM) for the solution of wave propagation problems at rather high frequencies. We focus on the propagation of guided waves along prismatic structures of constant cross-section. Comparisons are made between NURBS-based discretizations and high-order spectral elements in terms of the achievable convergence rates. We find that for the same order of shape functions, NURBS can lead to significantly smaller errors compared with Lagrange polynomials. The difference becomes particularly important at very high frequencies, where spectral elements are prone to instabilities. Furthermore, we analyze the behavior of NURBS for the discretization of curved boundaries, where the benefit of exact geometry representation becomes crucial even in the low-frequency range. (C) 2016 Elsevier B.V. All rights reserved.
机译:我们讨论了非均匀有理B样条(NURBS)在比例边界有限元方法(SBFEM)中的应用,用于解决相当高频率下的波传播问题。我们专注于导波沿着恒定横截面的棱镜结构的传播。就可达到的收敛速度而言,对基于NURBS的离散化和高阶谱元素进行了比较。我们发现,对于相同阶数的形状函数,与Lagrange多项式相比,NURBS可以导致更小的误差。在非常高的频率(频谱元素易于不稳定)的情况下,差异变得尤为重要。此外,我们分析了NURBS用于弯曲边界离散化的行为,其中精确的几何图形表示的好处即使在低频范围内也变得至关重要。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号