首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy
【24h】

Three-dimensional image-based mechanical modeling for predicting the response of breast cancer to neoadjuvant therapy

机译:基于三维图像的机械模型可预测乳腺癌对新辅助治疗的反应

获取原文
获取原文并翻译 | 示例

摘要

The use of quantitative medical imaging data to initialize and constrain mechanistic mathematical models of tumor growth has demonstrated a compelling strategy for predicting therapeutic response. More specifically, we have demonstrated a data driven framework for prediction of residual tumor burden following neoadjuvant therapy in breast cancer that uses a biophysical mathematical model combining reaction diffusion growth/therapy dynamics and biomechanical effects driven by early time point imaging data. Whereas early work had been based on a limited dimensionality reduction (two-dimensional planar modeling analysis) to simplify the numerical implementation, in this work, we extend our framework to a fully volumetric, three-dimensional biophysical mathematical modeling approach in which parameter estimates are generated by an inverse problem based on the adjoint state method for numerical efficiency. In an in silico performance study, we show accurate parameter estimation with error less than 3% as compared to ground truth. We apply the approach to patient data from a patient with pathological complete response and a patient with residual tumor burden and demonstrate technical feasibility and predictive potential with direct comparisons between imaging data observation and model predictions of tumor cellularity and volume. Comparisons to our previous two-dimensional modeling framework reflect enhanced model prediction of residual tumor burden through the inclusion of additional imaging slices of patient-specific data. (C) 2016 Elsevier B.V. All rights reserved.
机译:使用定量医学成像数据来初始化和约束肿瘤生长的力学数学模型,已证明了预测治疗反应的有效策略。更具体地说,我们已经展示了一种数据驱动的框架,用于预测乳腺癌新辅助治疗后的残余肿瘤负荷,该框架使用结合了反应扩散生长/治疗动力学和早期时间点成像数据驱动的生物力学效应的生物物理数学模型。尽管早期的工作是基于有限的降维(二维平面建模分析)以简化数值实现,但在这项工作中,我们将框架扩展到了一种完全容积的,三维生物物理数学建模方法,其中参数估计为基于伴随状态法的反问题产生的数值效率。在计算机性能研究中,我们显示了准确的参数估计,与地面真实情况相比,误差小于3%。我们将该方法应用于来自病理完全缓解患者和残余肿瘤负荷患者的患者数据,并通过影像数据观察与肿瘤细胞数量和体积的模型预测之间的直接比较证明了技术可行性和预测潜力。与我们先前的二维建模框架的比较反映了通过包含更多的患者特定数据的成像切片,可以增强模型预测残余肿瘤负荷的能力。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
  • 作者单位

    Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA;

    Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA|Vanderbilt Univ, Dept Neurosurg, 221 Kirkland Hall, Nashville, TN 37235 USA|Vanderbilt Univ, Dept Radiol & Radiol Sci, 221 Kirkland Hall, Nashville, TN 37235 USA;

    Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA|Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA|Univ Texas Austin, Dept Internal Med, Austin, TX 78712 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tumor; Mechanics; Mathematical; Computational; Oncology; Finite element;

    机译:肿瘤;力学;数学;计算;肿瘤学;有限元;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号