首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >How to improve efficiency and robustness of the Newton method in geometrically non-linear structural problem discretized via displacement-based finite elements
【24h】

How to improve efficiency and robustness of the Newton method in geometrically non-linear structural problem discretized via displacement-based finite elements

机译:在基于位移的有限元离散化的几何非线性结构问题中,如何提高牛顿法的效率和鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

In this paper we show how to significantly improve the robustness and the efficiency of the Newton method in geometrically non-linear structural problems discretized via displacement-based finite elements. The strategy is based on the relaxation of the constitutive equations at each integration point. This leads to an improved iterative scheme which requires a very low number of iterations to converge and can withstand very large steps in step-by-step analyses. The computational cost of each iteration is the same as the original Newton method. The impressive performances of the proposal are shown by many numerical tests. In geometrically non-linear analysis, the proposed strategy, called MIP Newton, seems worthy to replace the standard Newton method in any finite element code based on displacement formulations. Its implementation in existing codes is very easy. (C) 2016 Elsevier B.V. All rights reserved.
机译:在本文中,我们展示了如何显着提高牛顿法在通过基于位移的有限元离散化的几何非线性结构问题中的鲁棒性和效率。该策略基于每个积分点的本构方程的松弛。这导致了改进的迭代方案,该方案需要很少的迭代次数即可收敛,并且可以承受逐步分析中非常大的步骤。每次迭代的计算成本与原始的牛顿法相同。许多数值测试显示了该提案令人印象深刻的性能。在几何非线性分析中,提出的称为MIP Newton的策略似乎值得在基于位移公式的任何有限元代码中替换标准的Newton方法。在现有代码中实现它非常容易。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号