首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design
【24h】

Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design

机译:用于增材制造的导热设计的耦合网格结构拓扑优化与设计相关的特征演化

获取原文
获取原文并翻译 | 示例

摘要

Significant advance in additive manufacturing (AM) is leading to a paradigm shift in design-for-manufacturing. The manufacturability concern over geometry complexity has largely been removed by AM, which will greatly promote design creativity. A representative paradigm shift is the increasing focus on lattice structures which can be efficiently manufactured by AM. Specifically, lattice structures have been used to replace conventional solid materials to reduce weight and enhance multi-functional properties. Hence, lattice structure topology optimization (LSTO) has drawn remarkable interest for being an optimal lattice infill design tool. Despite the extensive investigation on LSTO, this paper addresses a novel aspect in the concurrent optimization of lattice infill and design-dependent movable features, on which boundary conditions are prescribed. This type of problem has practical importance, such as cooling channel system (forced convective boundary) design used in different thermal management applications, which is challenging to solve numerically due to the increased complexity in sensitivity calculation. In the proposed method, parametric level set function is used to represent the movable feature geometry and accordingly, the thermal boundary conditions are implicitly applied. A detailed sensitivity analysis is performed to provide the effective sensitivity information for design update. Several numerical examples are provided to prove the effectiveness of the proposed method. In particular, the proposed methodology is applied to the concurrent optimization of cooling channels and the optimized design is printed out to demonstrate the manufacturability. (C) 2017 Elsevier B.V. All rights reserved.
机译:增材制造(AM)的显着进步导致制造设计模式发生转变。 AM消除了对几何复杂性的可制造性问题,这将极大地促进设计创意。代表性的范式转移是人们越来越关注可通过AM有效制造的晶格结构。具体而言,晶格结构已用于代替常规的固体材料以减轻重量并增强多功能性能。因此,晶格结构拓扑优化(LSTO)作为一种最佳的晶格填充设计工具引起了极大的兴趣。尽管对LSTO进行了广泛的研究,但本文提出了同时优化晶格填充和依赖于设计的可移动特征的一个新方面,其中规定了边界条件。这种类型的问题具有实际重要性,例如在不同的热管理应用中使用的冷却通道系统(强制对流边界)设计,由于灵敏度计算的复杂性越来越高,因此在数值上难以解决。在所提出的方法中,参数水平集函数用于表示可移动特征的几何形状,因此,隐式应用了热边界条件。进行了详细的灵敏度分析,以提供有效的灵敏度信息以进行设计更新。提供了几个数值示例,以证明该方法的有效性。特别地,将所提出的方法应用于冷却通道的同时优化,并且打印出优化设计以证明可制造性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号