首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Macroscopic thermal finite element modeling of additive metal manufacturing by selective laser melting process
【24h】

Macroscopic thermal finite element modeling of additive metal manufacturing by selective laser melting process

机译:通过选择性激光熔化工艺制造添加剂金属的宏观热有限元建模

获取原文
获取原文并翻译 | 示例
           

摘要

A 3D finite element model is developed to study heat exchange during metal selective laser melting (SLM). The approach is conducted on the scale of the part to be formed, using a level set framework to track the interface between the constructed workpiece and non-melted powder, and interface between the gas domain and the successive powder bed layers. In order to keep sustainable the computational efficiency, the powder bed deposition and the energy input are simplified by the scale of an entire layer or fractions of each layer. Layer fractions are identified directly from a description of the global laser scan plan of the part to be built. Each fraction is heated during a time interval corresponding to the exposure time to the laser beam, and then cooled down during a time interval equal to the scan time for the considered layer fraction. The global heat transfer through the part under additive construction and through the powder material non-exposed to the laser beam is simulated. To reduce the computational cost, a refining and de-refining mesh adaptation is carried out with a conform mesh strategy. Mesh sensitivity tests and validation of energy conservation are discussed. The proposed model is able to predict the temperature distribution and evolution in the constructed workpiece and non-melted powder during the SLM process at the macroscale, for parts of complex geometry. Application is shown for a nickel based alloy (IN718), but the numerical model can be easily extended to other materials by using their data sets. (C) 2017 Elsevier B.V. All rights reserved.
机译:开发了3D有限元模型来研究金属选择性激光熔化(SLM)期间的热交换。该方法在要形成的零件的尺寸上进行,使用水平集框架跟踪构造的工件与未熔融粉末之间的界面以及气域与相继粉末床层之间的界面。为了保持可持续的计算效率,整个床层或每层的比例简化了粉末床的沉积和能量输入。可以从对要制造的零件的整体激光扫描计划的描述中直接识别层分数。在与激光束曝光时间相对应的时间间隔内加热每个部分,然后在与所考虑的层级分的扫描时间相等的时间间隔内将其冷却。模拟通过添加剂构造的零件以及未暴露于激光束的粉末材料的整体热传递。为了减少计算成本,使用了conform mesh策略进行了细化和细化网格适配。讨论了网格灵敏度测试和节能验证。对于复杂几何形状的零件,所提出的模型能够在SLM过程中以宏观方式预测所构造的工件和未熔融粉末中的温度分布和演变。示出了镍基合金(IN718)的应用,但是通过使用其数据集,可以轻松地将数值模型扩展到其他材料。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号