首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Model order reduction of nonlinear homogenization problems using a Hashin-Shtrikman type finite element method
【24h】

Model order reduction of nonlinear homogenization problems using a Hashin-Shtrikman type finite element method

机译:使用Hashin-Shtrikman型有限元方法对非线性均质化问题进行模型降阶

获取原文
获取原文并翻译 | 示例

摘要

AbstractThis work presents a computational nonlinear homogenization approach, the starting point of which is a model order reduction method based on data-clustering. To this end, the micromechanical data from numerical experiments (snapshots) is analyzed in order to identify characteristic microstructural deformation patterns. These describe how the macroscopic strain typically localizes within the microstructure. The outcome of the procedure is a subdivision of the microstructure into a set of clusters of material points. Within each cluster the strain is then approximated as being constant.The mechanical problem is formulated in terms of a three-field Hashin–Shtrikman type variational formulation which is based on the introduction of a linear-elastic reference medium. After discretization, most of the global unknowns can be eliminated via static condensation leaving the piecewise constant cluster strains as the primary unknowns. The resulting homogenization scheme includes, as special cases, the finite element method as well as Hashin–Shtrikman and Talbot–Willis type homogenization approaches with phase-wise constant trial fields (as well as related bounds). The limit case ’finite element method’ allows to transfer knowledge from finite element technology and thus provides new strategies for the choice of the stiffness of the reference material. The method is applied to several nonlinear microstructures with different inclusion volume fractions and varying degree of anisotropy. The results are shown to be in good agreement with full-field FE-simulations. Furthermore, the method is used to compute a refined upper bound of the Talbot–Willis type (compared to phase-wise constant trial fields), which converges to the finite element solution with increasingly refined discretization.
机译: 摘要 此工作提出了一种计算非线性均质化方法,其起点是基于数据聚类的模型降阶方法。为此,分析了来自数值实验(快照)的微机械数据,以识别特征性的微结构变形模式。这些描述了宏观应变通常如何定位在微结构内。该过程的结果是将微观结构细分为一组材料点簇。然后,在每个簇中,应变近似为常数。 机械问题由三场Hashin表示–Shtrikman型变分公式,该公式基于线性弹性参考介质的引入。离散化之后,大多数全局未知数可以通过静态凝结消除,而将分段恒定簇应变作为主要未知数。作为特殊情况,所得的均化方案包括有限元方法以及具有阶段性恒定试验场(以及相关范围)的Hashin–Shtrikman和Talbot–Willis型均质方法。极限情况下的“有限元法”允许从有限元技术中转移知识,从而为选择参考材料的刚度提供了新的策略。该方法应用于具有不同夹杂物体积分数和不同各向异性程度的几种非线性微结构。结果表明与全场有限元仿真非常吻合。此外,该方法还用于计算Talbot–Willis类型的精确上限(与逐阶段恒定试验场相比),收敛到具有日益精细化离散化的有限元解决方案。 < / ce:abstract-sec>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号