首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A scalable fully implicit framework for reservoir simulation on parallel computers
【24h】

A scalable fully implicit framework for reservoir simulation on parallel computers

机译:用于并行计算机上油藏模拟的可扩展的完全隐式框架

获取原文
获取原文并翻译 | 示例

摘要

AbstractThe modeling of multiphase fluid flow in porous medium is of interest in the field of reservoir simulation. The promising numerical methods in the literature are mostly based on the explicit or semi-implicit approach, which both have certain stability restrictions on the time step size. In this work, we introduce and study a scalable fully implicit solver for the simulation of two-phase flow in a porous medium with capillarity, gravity and compressibility, which is free from the limitations of the conventional methods. In the fully implicit framework, a mixed finite element method is applied to discretize the model equations for the spatial terms, and the implicit Backward Euler scheme with adaptive time stepping is used for the temporal integration. The resultant nonlinear system arising at each time step is solved in a monolithic way by using a Newton–Krylov type method. The corresponding linear system from the Newton iteration is large sparse, nonsymmetric and ill-conditioned, consequently posing a significant challenge to the fully implicit solver. To address this issue, the family of additive Schwarz preconditioners is taken into account to accelerate the convergence of the linear system, and thereby improves the robustness of the outer Newton method. Several test cases in one, two and three dimensions are used to validate the correctness of the scheme and examine the performance of the newly developed algorithm on parallel computers.
机译: 摘要 多孔介质中多相流体流动的建模在油藏模拟领域中很有意义。文献中有希望的数值方法主要基于显式或半隐式方法,这两种方法都对时间步长有一定的稳定性限制。在这项工作中,我们引入并研究了一种可扩展的完全隐式求解器,该仿真器可模拟具有毛细作用,重力和可压缩性的多孔介质中的两相流,而不受传统方法的限制。在完全隐式框架中,使用混合有限元方法离散化空间项的模型方程,并将具有自适应时间步长的隐式Backward Euler方案用于时间积分。通过使用牛顿-克里洛夫(Newton-Krylov)方法以单片方式求解在每个时间步出现的合成非线性系统。来自牛顿迭代的相应线性系统是稀疏的,非对称的和病态的,因此对完全隐式求解器构成了重大挑战。为了解决此问题,考虑了加性Schwarz预调节器系列,以加速线性系统的收敛,从而提高了外牛顿法的鲁棒性。使用一维,二维和三维中的几个测试案例来验证该方案的正确性,并检验新算法在并行计算机上的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号