首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A fully-coupled computational framework for large-scale simulation of fluid-driven fracture propagation on parallel computers
【24h】

A fully-coupled computational framework for large-scale simulation of fluid-driven fracture propagation on parallel computers

机译:用于平行计算机上的流体驱动断裂传播的大规模模拟的全耦合计算框架

获取原文
获取原文并翻译 | 示例

摘要

The propagation of cracks driven by a pressurized fluid emerges in several areas of engineering, including structural, geotechnical, and petroleum engineering. In this paper, we present a robust numerical framework to simulate fluid-driven fracture propagation that addresses the challenges emerging in the simulation of this complex coupled nonlinear hydro-mechanical response. We observe that the numerical difficulties stem from the strong nonlinearities present in the fluid equations as well as those associated with crack propagation, from the quasi-static nature of the problem, and from the a priori unknown and potentially intricate crack geometries that may arise. An additional challenge is the need for large scale simulation owing to the mesh resolution requirements and the expected 3D character of the problem in practical applications. To address these challenges we model crack propagation with a high-order hybrid discontinuous Galerkin/cohesive zone model framework, which has proven massive scalability properties, and we model the lubrication flow inside the propagating cracks using continuous finite elements, furnishing a fully-coupled discretization of the solid and fluid equations. We find that a conventional Newton-Raphson solution algorithm is robust even in the presence of crack propagation. The parallel approach for solving the linearized coupled problem consists of standard iterative solvers based on domain decomposition. The resulting computational approach provides the ability to conduct highly-resolved and quasi-static simulations of fluid-driven fracture propagation with unspecified crack path. We conduct a series of numerical tests to verify the computational framework against known analytical solutions in the toughness and viscosity dominated regimes and we demonstrate its performance in terms of robustness and parallel scalability, enabling simulations of several million degrees of freedom on hundreds of processors. (C) 2020 Elsevier B.V. All rights reserved.
机译:由加压流体驱动的裂缝的传播在几个工程领域出现,包括结构,岩土工程和石油工程。在本文中,我们提出了一种稳健的数值框架,用于模拟流体驱动的断裂传播,该骨折传播解决了这种复合耦合非线性水力机械反应的模拟中出现的挑战。我们观察到数值困难从流体方程中存在的强非线性以及与裂纹传播相关的那些,来自问题的准静态性质,以及可能出现的先验未知和潜在复杂的裂缝几何形状。额外的挑战是由于网格分辨率要求和实际应用中问题的预期3D字符需要大规模仿真。为了解决这些挑战,我们使用高阶混合不连续的Galerkin /凝聚区域模型框架模型裂纹传播,这已经证明了大规模的可扩展性,并且我们使用连续有限元模拟传播裂缝内的润滑流量,提供完全耦合的离散化固体和流体方程。我们发现,即使在存在裂缝传播中,传统的牛顿Raphson解决方案算法也是坚固的。求解线性化耦合问题的并行方法包括基于域分解的标准迭代溶剂组成。所得到的计算方法提供了与未指定的裂缝路径进行流体驱动的断裂传播的高分辨率和准静态模拟的能力。我们开展一系列数值测试,以验证韧性和粘度主导地区中已知的分析解决方案的计算框架,我们在鲁棒性和平行可扩展性方面展示其性能,从而实现了数百人的数百万种自由度。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号