首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Superconvergence analysis of second and third order rectangular edge elements with applications to Maxwell's equations
【24h】

Superconvergence analysis of second and third order rectangular edge elements with applications to Maxwell's equations

机译:二阶和三阶矩形边缘元素的超收敛分析及其在麦克斯韦方程中的应用

获取原文
获取原文并翻译 | 示例

摘要

Superconvergence for the second and third order edge elements is investigated on nonuniform rectangular meshes. First, we develop the explicit expression for the Nedelec interpolation based on the hierarchical basis functions. Then we prove that the pointwise interpolation error estimates are one order higher at element Gauss points than the standard analysis can provide. Using the superconvergence at Gauss points, we establish the discrete l(2) norm superconvergence for the solution of Maxwell's equations solved by both the second and third order rectangular edge elements. Numerical results justifying our theoretical analysis are presented. (C) 2017 Elsevier B.V. All rights reserved.
机译:在非均匀矩形网格上研究了二阶和三阶边缘元素的超收敛性。首先,我们基于层次基础函数为Nedelec插值开发显式表达式。然后,我们证明元素高斯点的逐点插值误差估计比标准分析所能提供的高一阶。使用高斯点的超收敛,我们建立了由二阶和三阶矩形边缘元素求解的麦克斯韦方程组解的离散l(2)范数超收敛。数值结果证明了我们的理论分析的正确性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号