首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An adaptive concurrent multiscale model for concrete based on coupling finite elements
【24h】

An adaptive concurrent multiscale model for concrete based on coupling finite elements

机译:基于耦合有限元的混凝土自适应并发多尺度模型

获取原文
获取原文并翻译 | 示例

摘要

A new adaptive concurrent multiscale approach for modeling concrete that contemplates two well separated scales (represented by two different meshes) is proposed in this paper. The macroscale stress distribution is used as an indicator to identify critical regions (where the material is prone to degrade) with the explicit aim to enrich these zones with detailed mesoscale material information comprising three basic phases: coarse aggregates, mortar matrix and interfacial transition zone. Thus, the concrete initially idealized as a homogeneous material is gradually replaced and enhanced by a heterogeneous multiphase one. This technique is particularly powerful to handle cases where the region with nonlinear behavior is not easy to anticipate. Furthermore, the proposed approach does not require the definition of a periodic cell (or a RVE), and the meshes from distinct scales are totally independent. The new adaptive mesh technique is based on the use of coupling finite elements to enforce the continuity of displacements between the non-matching meshes associated with the two different scales of analysis. Besides that, mesh fragmentation concepts are incorporated to simulate the crack formation and propagation at the mesoscopic scale, without the need of defining complex and CPU-time demanding crack-tracking algorithms. The strategy is developed integrally within the framework of continuum mechanics, which represents an advantage with respect to other approaches based on discrete traction/separation-law. Numerical examples with complex crack patterns are conducted to validate the proposed multiscale approach. Furthermore, the efficiency and accuracy of the novel technique are compared against full mesoscale and standard concurrent multiscale models, showing excellent results. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文提出了一种新的自适应并行多尺度建模方法,该方法考虑了两个良好分隔的尺度(由两个不同的网格表示)。宏观应力分布用作确定关键区域(材料易于降解的区域)的指标,其明确目的是通过包含三个基本阶段的详细中尺度材料信息来丰富这些区域,这些信息包括三个基本阶段:粗骨料,砂浆基质和界面过渡带。因此,最初被理想化为均质材料的混凝土逐渐被异质多相材料替代和增强。该技术在处理不容易预测具有非线性行为的区域的情况时特别强大。此外,所提出的方法不需要定义周期单元(或RVE),并且不同尺度的网格是完全独立的。新的自适应网格技术基于使用耦合有限元来强制与两个不同分析尺度相关的非匹配网格之间的位移连续性。除此之外,还引入了网格碎片概念,以介观尺度模拟裂纹的形成和扩展,而无需定义复杂且耗时的CPU裂纹跟踪算法。该策略是在连续力学的框架内整体开发的,相对于其他基于离散牵引力/分离定律的方法而言,这是一个优势。进行了具有复杂裂纹模式的数值示例,以验证所提出的多尺度方法。此外,将这种新技术的效率和准确性与全中尺度和标准并行多尺度模型进行了比较,显示了出色的结果。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号