首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A self-adaptive hybridized differential evolution naked mole-rat algorithm for engineering optimization problems
【24h】

A self-adaptive hybridized differential evolution naked mole-rat algorithm for engineering optimization problems

机译:一种自适应杂交差分演进裸体摩尔大鼠工程优化问题算法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a self-adaptive hybrid variant of differential evolution (DE) algorithm and naked mole-rat algorithm (NMRA), namely SaDN. The algorithm is altogether a new version, designed to overcome the local optima stagnation and poor exploration properties of DE and NMRA respectively. The new algorithm has been designed by incorporating DE into the worker phase of NMRA while keeping all the major parameters of both the algorithms intact. In order to make the algorithm self-adaptive, seven different mutation strategies have been explored for different parameters, and it was found that Levy based scaling factor and sigmoidal mating factor are the best parameters. Apart from these parameters, adaptive properties have been introduced to all other parameters so that no user-based initialization of parameters is required. For performance evaluation, the proposed SaDN is tested on CEC 2005, CEC 2014 and CEC 2019 benchmark problems and comparison is performed for variable population size and higher dimension sizes. From the experimental results, it has been found that the proposed SaDN performs better with respect to other major state-of-the-art algorithms from the literature. Apart from that, SaDN is subjected to three engineering design problems and compared with other algorithms. Numerical results demonstrate that SaDN shows better performance and is statistically significant in terms of Wilcoxon's rank-sum test, Freidman's test and computational complexity. The source code for the proposed algorithms is available at: https://github.com/rohitsalgotra. (C) 2021 Elsevier B.V. All rights reserved.
机译:本文介绍了差分进化(DE)算法和裸体摩尔大鼠算法(NMRA)的自适应混合变体,即SADN。该算法完全是一个新版本,旨在克服当地最佳停滞和DE和NMRA的差异差。通过将DE包含在NMRA的工人阶段,同时保持算法的所有主要参数完整的所有主要参数设计了新的算法。为了使算法自适应自适应,针对不同参数探索了七种不同的突变策略,发现基于征收的缩放因子和S形交配因子是最佳参数。除了这些参数之外,还将自适应属性引入所有其他参数,以便不需要基于用户的初始化。对于绩效评估,所提出的SADN在CEC 2005上测试,CEC 2014和CEC 2019基准问题和比较进行了可变人口大小和更高的尺寸尺寸。从实验结果中,已经发现,所提出的SADN对来自文献的其他主要的最先进的算法表现更好。除此之外,SADN受到三种工程设计问题,与其他算法相比。数值结果表明,SADN表现出更好的性能,并且在Wilcoxon的秩和测试,Freidman的测试和计算复杂性方面具有统计学意义。所提出的算法的源代码可用于:https://github.com/rohitsalgotra。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号