首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes
【24h】

A mixed interface-capturing/interface-tracking formulation for thermal multi-phase flows with emphasis on metal additive manufacturing processes

机译:用于热多相流动的混合界面捕获/接口跟踪配方,重点是金属添加剂制造工艺

获取原文
获取原文并翻译 | 示例
           

摘要

High fidelity thermal multi-phase flow simulations are in much demand to reveal the multi-scale and multi-physics phenomena in metal additive manufacturing (AM) processes, yet accurate and robust predictions remain challenging. In this paper, we present a novel computational framework by mixing interface-capturing/interface-tracking methods for simulating the thermal multi-phase flows in metal AM applications, focusing on better handling the gas-metal interface, where AM physics, such as phase transitions and laser-material interactions, mainly takes place. The framework, built on level set method and variational multi-scale formulation (VMS), features three major contributions: (1) a simple computational geometry-based re-initialization approach, which maintains excellent signed distance property on unstructured meshes, re-constructs an explicit representation of gas-metal interface from the level set, and facilitates the treatment of the multiple laser reflections during keyhole evolution in AM processes; (2) a fully coupled VMS formulation for thermal multi-phase governing equations, including Navier-Stokes, level set convection, and thermodynamics with melting, solidification, evaporation, and interfacial force models; and (3) a three-level recursive preconditioning technique to enhance the robustness of linear solvers. We first compare the geometry-based re-initialization with the Eikonal partial differential equation (PDE)-based approach on two benchmark problems on level set convection and bubble dynamics. The comparison shows the geometry-based approach attains equivalent and even better performance on key criteria than the PDE-based counterpart. We then apply the developed framework to simulate two AM experiments, which Argonne National Laboratory has recently conducted using in-situ high-speed, high-energy x-ray imaging. The proposed framework's accuracy is assessed by thoroughly comparing the simulated results against experimental measurements on various quantities. We also report important quantities that experiments cannot measure to show the modeling capability. (C) 2021 Elsevier B.V. All rights reserved.
机译:高保真热多相流模拟需求有很大要求,揭示金属添加剂制造业(AM)过程中的多尺度和多物理现象,但准确且稳健的预测仍然具有挑战性。在本文中,我们通过混合界面捕获/接口跟踪方法来介绍一种用于模拟金属AM应用中的热多相流的接口捕获/接口跟踪方法,专注于更好地处理气金属界面,在物理学中,例如相位过渡和激光材料相互作用主要发生。框架,内置于级别设置方法和变化多尺度配方(VMS),具有三种主要贡献:(1)基于简单的计算几何重新初始化方法,它在非结构化网格上维护了优异的签名距离属性,重新构建从水平集中的气金属界面的明确表示,并有助于在AM过程中的锁孔进化期间进行多重激光反射的处理; (2)用于热多相控制方程的完全耦合的VMS制剂,包括Navier-Stokes,Level Set对流和具有熔化,凝固,蒸发和界面力模型的热力学; (3)三级递归预处理技术,增强了线性溶剂的鲁棒性。首先,将基于几何的重新初始化与eikonal部分微分方程(PDE)进行比较,基于水平集对流和气泡动力学的两个基准问题。比较显示了基于几何的方法在关键标准上达到了相同的甚至更好的性能,而不是基于PDE的对应物。然后,我们将发达的框架应用于模拟两项AM实验,该实验最近使用原位高速,高能X射线成像进行了最近进行的。通过彻底比较模拟结果对各种量的实验测量来评估所提出的框架的准确性。我们还报告了重要的数量,实验无法衡量以显示建模能力。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号