首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A hyper-reduction method using adaptivity to cut the assembly costs of reduced order models
【24h】

A hyper-reduction method using adaptivity to cut the assembly costs of reduced order models

机译:一种使用适应性来降低阶数模型的装配成本的超减速方法

获取原文
获取原文并翻译 | 示例

摘要

At every iteration or timestep of the online phase of some reduced-order modelling schemes for non-linear or time-dependent systems, large linear systems must be assembled and then projected onto a reduced order basis of small dimension. The projected small linear systems are cheap to solve, but assembly and projection become the dominant computational cost. In this paper we introduce a new hyper-reduction strategy called reduced assembly (RA) that drastically cuts these costs. RA consists of a triangulation adaptation algorithm that uses a local error indicator to construct a reduced assembly triangulation specially suited to the reduced order basis. Crucially, this reduced assembly triangulation has fewer cells than the original one, resulting in lower assembly and projection costs. We demonstrate the efficacy of RA on a Galerkin-POD type reduced order model (RAPOD). We show performance increases up to five times over the baseline Galerkin-POD method on a non-linear reaction-diffusion problem solved with a semi-implicit time-stepping scheme and up to seven times for a 3D hyperelasticity problem solved with a continuation Newton-Raphson algorithm. The examples are implemented in the DOLFIN finite element solver using PETSc and SLEPc for linear algebra. Full code and data files to produce the results in this paper are provided as supplementary material. (C) 2021 The Author(s). Published by Elsevier B.V.
机译:在非线性或时间依赖系统的一些衰减建模方案的在线阶段的每一次迭代或时间步骤中,必须组装大线性系统,然后投影到小维度的减少的顺序。预计的小线性系统可以解决,但装配和投影成为主导的计算成本。在本文中,我们介绍了一种新的超级减少策略,称为减少的装配(RA),彻底减少了这些成本。 RA由三角测量适配算法组成,该算法使用本地错误指示器构建特殊适合订单的减少的组装三角形。至关重要的是,这种减少的组装三角测量的细胞比原始组件更少,导致组装和投影成本更低。我们展示了RA对Galerkin-Pod类型减少阶模型(Rapod)的功效。我们显示性能在基线Galerkin-Pod方法上增加了五倍,在用半隐约时间步进方案解决的非线性反应 - 扩散问题上,对于用延续牛顿解决的3D超弹性问题,最多七次七次解决。 Raphson算法。这些实施例在Dolfin有限元求解器中使用PETSC和SLEPC来实现,用于线性代数。在本文中产生的完整代码和数据文件是作为补充材料提供的。 (c)2021提交人。 elsevier b.v出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号