首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Unfitted Nitsche's method for computing band structures of phononic crystals with periodic inclusions
【24h】

Unfitted Nitsche's method for computing band structures of phononic crystals with periodic inclusions

机译:不完整的Nitsche具有周期性夹杂物粘性晶体频带结构的方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an unfitted Nitsche's method to compute the band structures of phononic crystal with periodic inclusions of general geometry. The proposed method does not require the background mesh to fit the interfaces of periodic inclusions, and thus avoids the expensive cost of generating body-fitted meshes and simplifies the inclusion of interface conditions in the formulation. The quasi-periodic boundary conditions are handled by the Floquet-Bloch transform, which converts the computation of band structures into an eigenvalue problem with periodic boundary conditions. More importantly, we show the well-posedness of the proposed method using a delicate argument based on the trace inequality, and further prove the convergence by the Babuska-Osborn theory. We achieve the optimal convergence rate at the presence of the periodic inclusions of general geometry. We demonstrate the theoretical results by two numerical examples, and show the capability of the proposed methods for computing the band structures without fitting the interfaces of periodic inclusions. (C) 2021 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种不合适的NITSCHE的方法来计算声子晶体的频带结构,具有一般几何形状的周期性夹杂物。所提出的方法不需要背景网格以适合周期性夹杂物的界面,因此避免了产生体拟合网格的昂贵成本,并简化了在制剂中包含界面条件的包含。准周期边界条件由FLOQUET-BLOCH变换处理,该变换将频带结构的计算转换为周期性边界条件的特征值问题。更重要的是,我们展示了基于跟踪不平等的微妙论证的提出方法的良好,并进一步证明了巴斯卡奥斯本理论的融合。我们在存在一般几何形状的周期性夹杂物的存在下实现最佳收敛速度。我们通过两个数值示例展示了理论结果,并显示了所提出的方法来计算带结构的方法,而不拟合周期性夹杂物的界面。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号