首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An efficient meshfree gradient smoothing collocation method (GSCM) using reproducing kernel approximation
【24h】

An efficient meshfree gradient smoothing collocation method (GSCM) using reproducing kernel approximation

机译:一种有效的网格非梯度平滑搭配搭配方法(GSCM)使用再现内核近似

获取原文
获取原文并翻译 | 示例

摘要

Strong-form direct collocation method based on the reproducing kernel (RK) approximation has been criticized frequently by the complexity and time-consuming computation of the derivatives, and it is rather hard to use the low-order basis functions to improve the efficiency. In this paper, we propose an efficient meshfree gradient smoothing collocation method (GSCM) based on the RK approximation which adopts the gradient smoothing technique for the calculation of the RK derivatives. Low-order basis functions such as constant functions can be utilized for the approximation in the numerical solutions of the elasticity problems which can greatly improve the efficiency. Conforming and nonconforming meshes can be constructed for the numerical integration of the gradient smoothing. Constraints of the numerical integration are established where the proper positions of the integration points and the corresponding weighs for the integration are derived to keep the consistency of the RK shape function and its smoothed gradients. These guarantee the accuracy and convergence of the proposed method. Numerical results demonstrate that the presented method can outmatch the conventional direct collocation method (DCM) in accuracy, stability and computational efficiency, and generally the GSCM-II using a double gradient smoothing performs better than the GSCM-I and the super-convergent gradient smoothing meshfree collocation method (SGSMC) using a single gradient smoothing. (C) 2020 Elsevier B.V. All rights reserved.
机译:基于再现内核(RK)近似的强大的直接搭配方法经常受到衍生物的复杂性和耗时的计算常见的批评,并且使用低阶基础函数来提高效率是相当难的。在本文中,我们提出了一种基于RK近似的高效网格非梯度平滑搭配搭配方法(GSCM),其采用梯度平滑技术来计算RK衍生物。诸如恒定功能的低阶基函数可用于在弹性问题的数值解中的近似值,这可以大大提高效率。可以构造符合和不合格网格,用于梯度平滑的数值集成。确定了数值积分的约束,其中导出了集成点和相应重量的适当位置,以保持RK形状函数及其平滑梯度的一致性。这些保证了所提出的方法的准确性和收敛性。数值结果表明,呈现的方法可以在精度,稳定性和计算效率中偶先传统的直接搭配方法(DCM),并且通常使用双梯度平滑的GSCM-II更好地执行GSCM-I和超级收敛梯度平滑MeshFREE搭配方法(SGSMC)使用单个梯度平滑。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号