首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Towards blending Physics-Based numerical simulations and seismic databases using Generative Adversarial Network
【24h】

Towards blending Physics-Based numerical simulations and seismic databases using Generative Adversarial Network

机译:利用生成的对抗网络向混合基于物理的数值模拟和地震数据库

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new strategy to blend the outcome of physics-based numerical simulations with massive but poorly-labelled experimental databases such as in-situ data routinely recorded for monitoring purposes. The proposed approach relies on a set of adversarial learning techniques with a twofold purpose: (1) finding two reduced-dimensional non-linear representations of both synthetic and experimental data; (2) training a stochastic generator of fake experimental responses conditioned by the physics-based simulation results.This methodology is applied to earthquake ground motion prediction. Indeed, regional three-dimensional high-fidelity numerical models accounting for both extended sources and complex geology are still limited to a low-frequency range. Moreover, they are prone to significant uncertainties induced by a lack of data on small scale geological structures and rupture processes. Databases of broadband seismic signals recorded worldwide at seismological networks are used to retrieve some pieces of information on these small scale data to generate realistic broadband signals from synthetic ones.Outstanding performances in encoding seismic signals are demonstrated, together with efficient generation capabilities, provided that the physics-based results carry enough information to properly condition the stochastic generator. In addition, this paper shows that the proposed method, fed only with raw data from both databases and numerical models, outperforms other random signal generators based on pre-existing expertise such as prescribed spectra and more or less complex phenomenological models. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文提出了一种新的策略,将基于物理的数值模拟的结果与大规模但不良标记的实验数据库混合,例如原位数据,以用于监测目的。所提出的方法依赖于具有双重目的的一组对抗性学习技术:(1)找到合成和实验数据的两个减少维度的非线性表示; (2)培训由基于物理的仿真结果调节的假实验响应的随机发电机。方法应用于地震地面运动预测。实际上,延长源和复杂地质的区域三维高保真数值模型仍然限于低频范围。此外,它们易于通过关于小规模地质结构缺乏数据引起的显着的不确定性。在地震网络上录制全球宽带地震信号的数据库用于检索关于这些小规模数据的一些信息,以产生来自合成型的现实宽带信号。扩展地震信号中的扩展性能,以及有效的产生能力,提供了基于物理的结果携带足够的信息来正确地调节随机发电机。此外,本文表明,仅使用来自数据库和数值模型的原始数据馈送的所提出的方法,优于其他随机信号发生器,基于预先存在的专业知识,例如规定的光谱和或多或少复杂的现象模型。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号