首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Sensitivity analysis and lattice density optimization for sequential inherent strain method used in additive manufacturing process
【24h】

Sensitivity analysis and lattice density optimization for sequential inherent strain method used in additive manufacturing process

机译:加性制造工艺顺序固有应变法的敏感性分析与晶格密度优化

获取原文
获取原文并翻译 | 示例

摘要

Compensation of the thermal distortion that occurs during the fabrication process is an important issue in the field of metal additive manufacturing. Considering the problem in forming a lattice structure inside an object to reduce the thermal distortion, we developed a lattice volume fraction distribution optimization method. Assuming that the linear elastic problem is solved using the finite element method (FEM), an inherent strain method applying a layer-by-layer process utilizing the element activation during the FEM is formed as a recurrence relation, and the sensitivity of an objective function is derived based on the adjoint method. The unit lattice shape is a simple cube with a cube or a sphere-shaped air hole, and its distribution is optimized by considering the minimum thickness of the wall surrounding it as a design variable. The effective stiffness tensor of the lattice is derived using a homogenization method. The functions of the effective properties with respect to the design variables are approximated through polynomial functions. The optimization problem is formulated as an unconstrained minimization problem. The design variables are optimized using the method of moving asymptotes. Herein, the validity of the proposed method is discussed based on quasi two-dimensional and three-dimensional numerical studies including a re-analysis through full-scale thermo-mechanical analysis. (C) 2020 Elsevier B.V. All rights reserved.
机译:制造过程中发生的热变形的补偿是金属添加剂制造领域的重要问题。考虑到在物体内形成晶格结构以减少热失真的问题,我们开发了晶格体积分量分布优化方法。假设使用有限元方法(FEM)解决了线性弹性问题,因此在FEM期间使用元素激活应用层逐层过程的固有应变方法形成为复发关系,以及目标函数的灵敏度基于伴随方法派生。单位格子形状是具有立方体或球形空气孔的简单立方体,并且通过将其周围的壁的最小厚度视为设计变量来优化其分布。使用均质化方法来衍生格子的有效刚度张量。关于设计变量的有效特性的功能近似于多项式函数。优化问题被制定为无约束最小化问题。使用移动渐近的方法优化设计变量。这里,基于准二维和三维数值研究讨论了所提出的方法的有效性,包括通过全尺度热机械分析进行再分析。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号