首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Fast methods for computing centroidal Laguerre tessellations for prescribed volume fractions with applications to microstructure generation of polycrystalline materials
【24h】

Fast methods for computing centroidal Laguerre tessellations for prescribed volume fractions with applications to microstructure generation of polycrystalline materials

机译:用于计算规定的体积分数的质心Laguerre曲面细分的快速方法,其应用于多晶材料的微观结构产生

获取原文
获取原文并翻译 | 示例

摘要

Ideas from the mathematical theory of optimal transport have recently been transferred to the micromechanics of polycrystalline materials, leading to fast methods for generating polycrystalline microstructures with grains of prescribed volume fraction in terms of centroidal Laguerre tessellations. In this work, we improve the state of the art solvers.For a given set of seeds and corresponding volume fractions summing to unity, there is a set of Laguerre weights such that the corresponding Laguerre tessellation realizes the prescribed volume fractions exactly. Furthermore, the Laguerre weights are unique up to a constant and can be determined by solving a convex optimization problem. However, whenever the optimization algorithm encounters a weight vector leading to an empty cell, the optimization problem is no longer locally strictly convex. To account for the latter, backtracking strategies are typically employed.We show that modern gradient-based optimization algorithms devoid of backtracking, like the Malitsky-Mishchenko method and the Barzilai-Borwein scheme easily overcome the described difficulty, leading to a significant speed-up compared to more traditional solvers. Furthermore, for computing centroidal Laguerre tessellations of prescribed volume fraction, we propose an Anderson-accelerated version of Lloyd's algorithm, and show, by numerical experiments, that it consistently reduces the run-time.We demonstrate the capabilities of our proposed methods for generating microstructures of polycrystalline materials with prescribed grain size distribution. (C) 2020 Elsevier B.V. All rights reserved.
机译:最近从最佳运输的数学理论的思路最近被转移到多晶材料的微机械中,从而在质心Laguerre曲格雷曲板曲板细分中产生了用规定体积分数的多晶微观结构产生多晶微观结构的快速方法。在这项工作中,我们改善了艺术求解器的状态。对于给定的种子和相应的体积分数求和为单位,有一组Laguerre权重,使得相应的Laguerre曲格雷曲板化精确地实现规定的体积分数。此外,Laguerre权重均为恒定,可以通过解决凸优化问题来确定。然而,每当优化算法遇到导致空小区的权重向量时,优化问题不再是局部严格凸出的。要考虑后者,通常采用回溯策略。我们展示了现代基于梯度的优化算法,其缺乏回溯,如Malitsky-Mishchenko方法和Barzilai-Borwein方案容易克服所描述的难度,导致显着加速与更传统的求解器相比。此外,对于规定的规定体积分数计算质心Laguerre曲格子,我们提出了一个Anderson加速的Lloyd算法版本,并通过数值实验表明它一直减少运行时。我们展示了我们提出的方法产生微观结构的能力具有规定晶粒尺寸分布的多晶材料。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号