首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An immersed-boundary/isogeometric method for fluid-structure interaction involving thin shells
【24h】

An immersed-boundary/isogeometric method for fluid-structure interaction involving thin shells

机译:一种沉浸式/异晶方法,用于薄壳的流体结构相互作用

获取原文
获取原文并翻译 | 示例

摘要

A computational framework is designed to accurately predict the elastic response of thin shells undergoing large displacements induced by local hydrodynamic forces, as well as to resolve the complex fluid pattern arising from its interaction with an incompressible fluid. Within the context of partitioned algorithms, two different approaches are employed for the fluid and structural domain. The fluid motion is resolved with a pressure projection method on a Cartesian structured grid. The immersed shell is modeled by means of a NURBS surface, and the elastic response is obtained from a displacement-based isogeometric analysis relying on the Kirchhoff-Love theory. The two solvers exchange data through a direct-forcing immersed-boundary approach, where the interpolation/spreading of the variables between Lagrangian and Eulerian grids is implemented with a Moving Least Squares approximation, which has proven to be very effective for moving boundaries. In this scenario, the isoparametric paradigm is exploited to perform an adaptive collocation of the Lagrangian markers, decoupling the local grid density of fluid and shell domains and reducing the computational expense. The accuracy of the method is verified by refinement analyses, segregating the Eulerian/Lagrangian refinement, which confirm the expected scheme accuracy in space and time. The effectiveness of the method is then validated against different test-cases of engineering and biologic inspiration, involving fundamentally different physical and numerical conditions, namely: (i) a flapping flag, (ii) an inverted flag, (iii) a clamped plate, (iv) a buoyant seaweed in a free stream. Both strong and loose coupling approaches are implemented to handle different fluid-to-structure density ratios, providing accurate results. (C) 2020 Elsevier B.V. All rights reserved.
机译:设计框架设计用于准确地预测薄壳的薄壳的弹性响应,其经历局部流体动力力诱导的大容量,以及解决与不可压缩流体相互作用产生的复杂流体图案。在分区算法的背景下,采用两种不同的方法用于流体和结构域。在笛卡尔结构电网上用压力投影方法解决流体运动。浸渍的壳体通过NURBS表面进行建模,并且弹性响应是从依赖于Kirchhoff-Love理论的基于位移的ISOGeometic分析中获得的。两个求解器通过直接强制浸没边界方法交换数据,其中拉格朗日和欧拉网格之间的变量的插值/扩展是用移动最小二乘近似实现的,这已经证明是对移动边界非常有效的。在这种情况下,利用等偶像篷地用于执行拉格朗日标记的自适应搭配,去耦流体和壳域的局部网格密度并降低计算费用。通过细化分析来验证该方法的准确性,分析欧拉/拉格朗日改进,该细化在空间和时间内确认了预期的方案准确性。然后验证该方法的有效性与工程和生物学启发的不同测试用例,涉及从根本上不同的物理和数量条件,即:(i)扑叠标志,(ii)倒标旗,(iii)夹板, (iv)在自由流中的浮力海藻。实施强度和松散的耦合方法以处理不同的流体到结构密度比,提供准确的结果。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号