首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A multi-material topology optimization algorithm based on the topological derivative
【24h】

A multi-material topology optimization algorithm based on the topological derivative

机译:基于拓扑衍生物的多材料拓扑优化算法

获取原文
获取原文并翻译 | 示例

摘要

We present a level-set based topology optimization algorithm for design optimization problems involving an arbitrary number of different materials, where the evolution of a design is solely guided by topological derivatives. Our method can be seen as an extension of the algorithm that was introduced in Amstutz and Andra (2006) for two materials to the case of an arbitrary number M of materials. We represent a design that consists of multiple materials by means of a vector-valued level set function which maps into RM-1. We divide the space RM-1 into M sectors, each corresponding to one material, and establish conditions for local optimality of a design based on certain generalized topological derivatives. The optimization algorithm consists in a fixed point iteration striving to reach this optimality condition. Like the two-material version of the algorithm, also our method possesses a nucleation mechanism such that it is not necessary to start with a perforated initial design. We show numerical results obtained by applying the algorithm to an academic example as well as to the compliance minimization in linearized elasticity. (C) 2020 Elsevier B.V. All rights reserved.
机译:我们介绍了一种基于级别的拓扑优化算法,用于设计优化问题,涉及任意数量的不同材料,其中设计的演化仅由拓扑衍生物引导。我们的方法可以被视为在Amstutz和Andra(2006)中引入的算法的延伸,这两种材料是任意数量M材料的情况。我们代表一种设计,通过向RM-1映射到RM-1的矢量值级别集功能,由多种材料组成。我们将空间RM-1分成M个扇区,每个扇区对应于一种材料,并基于某些广义拓扑衍生物确定局部最优性的条件。优化算法在于固定点迭代争取达到这种最优性条件。与算法的两材料版本一样,我们的方法也具有成核机制,使得不需要从穿孔初始设计开始。我们通过将算法应用于学术榜样以及线性化弹性的顺应性最小化来表明数值结果。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号