首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Geometrically nonlinear multi-patch isogeometric analysis of planar curved Euler-Bernoulli beams
【24h】

Geometrically nonlinear multi-patch isogeometric analysis of planar curved Euler-Bernoulli beams

机译:平面弯曲Euler-Bernoulli梁的几何非线性多贴片异步分析

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a novel isogeometric beam formulation for thin, elastic, planar curved beams subjected to large displacements. The Euler-Bernoulli beam theory is employed. In the formulation, a two-dimensional continuum beam is entirely described by its axis and a convective frame rigidly attached to the beam axis. Rational B-spline basis functions are used to construct the geometrical approximation of the beam axis, and the translational displacements of the beam axis are considered as the unknown kinematics. A property of NURBS curves is used to introduce rotational degrees of freedom at both ends of the beam. With the end rotational degrees of freedom, applying rotational boundary conditions and concentrated moments are straightforward. In addition, rigid connections between beams can be easily simulated. The accuracy and efficiency of the proposed beam formulation are verified by several well-established problems. (C) 2020 Elsevier B.V. All rights reserved.
机译:本研究提出了一种用于经受大型位移的薄,弹性平面弯曲梁的新型异构梁配方。采用欧拉伯努利光束理论。在配方中,二维连续梁完全由其轴线和对流框架刚性地附接到梁轴线。 Rational B样条基函数用于构造梁轴的几何逼近,并且光束轴的平移位移被认为是未知的运动学。 NURBS曲线的属性用于在光束的两端引入旋转自由度。随着端部旋转自由度,施加旋转边界条件和集中的时刻是简单的。另外,可以容易地模拟光束之间的刚性连接。拟议的光束配方的准确性和效率通过几个良好的问题验证。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号