首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity
【24h】

Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity

机译:考虑压力限制,制造不确定性和几何非线性的典型机制的拓扑优化

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes and investigates two formulations to topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity. The first formulation extends the maximum output displacement robust approach with stress constraints to incorporate the effects of geometric nonlinear behavior during the optimization process. The second formulation relies on the concept of path-generating mechanisms, where not only the final configuration is important, but also the load-displacement equilibrium path. A novel path-generating formulation is thus proposed, not only to achieve the prescribed equilibrium path, but also to take stress constraints and manufacturing uncertainty into account during the optimization process. Although both formulations have different goals, the same main techniques are employed: density approach to topology optimization, augmented Lagrangian method to handle the large number of stress constraints, three-field robust approach to handle the manufacturing uncertainty, and the energy interpolation scheme to handle convergence issues due to large deformation in void regions. Several numerical examples are addressed to demonstrate applicability of the proposed approaches. The optimized results are post-processed with body-fitted finite element meshes. Obtained results demonstrate that: (1) the proposed nonlinear analysis based maximum output displacement approach is able to provide solutions with good performance in situations of large displacements, with stress and manufacturing requirements satisfied; (2) the linear analysis based maximum output displacement approach provides optimized topologies that show large stress constraint violations and rapidly varying stress behavior under uniform boundary variation, when these are post-processed with full nonlinear analysis; (3) the proposed path-generating formulation is able to provide solutions that follow the prescribed control points, including stress robustness. (C) 2020 ElsevierB.V. All rights reserved.
机译:本文提出并研究了考虑应力限制,制造不确定性和几何非线性的兼容机制的两种制剂。第一配方延伸了具有应力约束的最大输出位移稳健方法,以在优化过程中结合几何非线性行为的影响。第二种配方依赖于路径产生机制的概念,不仅最终配置是重要的,而且还有负载 - 位移平衡路径。因此提出了一种新的路径产生制剂,不仅可以实现规定的平衡路径,而且在优化过程中考虑应力限制和制造不确定性。虽然这两种配方具有不同的目标,但采用了相同的主要技术:拓扑优化的密度方法,增加拉格朗日方法,处理大量的压力约束,三场鲁棒方法处理制造不确定性,以及能量插补方案处理由于空隙区域大变形导致的收敛问题。解决了几个数值例子以证明所提出的方法的适用性。优化的结果是用身体配合有限元网的后处理。获得的结果表明:(1)所提出的基于非线性分析的最大输出位移方法能够在大型位移的情况下提供具有良好性能的解决方案,满足压力和制造要求; (2)基于线性分析的最大输出位移方法提供了优化的拓扑,在均匀的边界变化下,显示出大的应力约束违规和快速变化的应力行为,当时用全部非线性分析后处理; (3)所提出的路径产生制剂能够提供遵循规定的控制点的解决方案,包括应力鲁棒性。 (c)2020 elsevierb.v。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号