首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Deep drawing simulations using the finite element method embedding a multi-level crystal plasticity constitutive law: Experimental verification and sensitivity analysis
【24h】

Deep drawing simulations using the finite element method embedding a multi-level crystal plasticity constitutive law: Experimental verification and sensitivity analysis

机译:利用嵌入多级晶体塑性本构法的有限元方法的深层绘图模拟:实验验证和敏感性分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents experimental verification of a multi-level simulation framework aimed at sheet metal forming analysis. Specifically, deep drawing of a cylindrical cup simulations from alloy AA6022-T4 sheets are carried out using a physically based elasto-plastic self-consistent (EPSC) polycrystalline homogenization model embedded in implicit finite elements and verified experimentally. The EPSC model takes into account the evolution of microstructure and directionality of deformation mechanisms acting at the single-crystal level in predicting material behavior. It is calibrated and validated as a standalone model using flow stress and R-ratio data as well as iso-shear contours measured along several directions of the sheet through uniaxial and plane strain tension experiments. Furthermore, the particularities pertaining to cyclic response including non-linear unloading and the Bauschinger effect are also calibrated through large strain tension-compression data. Consistent with experimental measurements, the process simulations in finite elements predict directionally dependent thinning of the cup, especially around the punch radius and variation in the cup height around the rim of the cup, referred to as earing. By comparing experiments and predictions, role of the R-ratio is revealed as critical for the accurate prediction of the cup height. Further sensitivity analysis shows that initial texture has a strong influence on the R-ratio, while introducing a minor effect on hardening. The analysis into the choice of finite element types in terms of their accuracy and efficiency shows that the 3D 8 nodal elements (C3D8R) and continuum shell 3D 8 nodal elements (SC8R) are superior over the planar shell 3D 4 nodal elements (S4R) with the former being the most accurate and the latter being computationally efficient. It is demonstrated that the simulation framework presented in this paper can be used to predict phenomena pertaining to material behavior and resulting geometrical changes important for optimization of the sheet metal forming processes. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文介绍了旨在为钣金成型分析的多级仿真框架的实验验证。具体地,来自合金AA6022-T4片材的圆柱形杯模拟的深绘制使用物理上的弹性塑料自我一致(EPSC)多晶均质化模型进行,嵌入隐含有限元并通过实验验证。 EPSC模型考虑了在预测材料行为中作用于单晶水平的变形机制的微观结构和方向性的演变。使用流量应力和R-比率数据以及沿着单轴的几个方向测量的ISO剪切轮廓通过单轴和平面应变张力实验进行校准并验证为独立模型。此外,通过大应变张力压缩数据校准包括非线性卸载和Bauschinger效应的循环响应的特殊性。与实验测量一致,有限元的过程模拟预测杯子的定向依赖性变薄,特别是在冲头半径周围围绕杯子的边缘周围的杯高度的变化,称为耳朵。通过比较实验和预测,R比的作用被揭示为对杯子高度的准确预测至关重要。进一步的敏感性分析表明,初始质地对R比具有很大的影响,同时引入了对硬化的微小影响。在其精度和效率方面分析有限元类型的选择表明,3D 8节点元素(C3D8R)和连续壳3D 8节点元素(SC8R)在平面壳3D 4节点元素(S4R)上优于前者是最准确的,后者正在计算效率。结果证明,本文呈现的仿真框架可用于预测与材料行为有关的现象,并产生对金属板形成工艺的优化的几何变化。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号