...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Deep drawing simulations using the finite element method embedding a multi-level crystal plasticity constitutive law: Experimental verification and sensitivity analysis
【24h】

Deep drawing simulations using the finite element method embedding a multi-level crystal plasticity constitutive law: Experimental verification and sensitivity analysis

机译:使用嵌入多级晶体塑性本构律的有限元方法进行的深拉模拟:实验验证和敏感性分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents experimental verification of a multi-level simulation framework aimed at sheet metal forming analysis. Specifically, deep drawing of a cylindrical cup simulations from alloy AA6022-T4 sheets are carried out using a physically based elasto-plastic self-consistent (EPSC) polycrystalline homogenization model embedded in implicit finite elements and verified experimentally. The EPSC model takes into account the evolution of microstructure and directionality of deformation mechanisms acting at the single-crystal level in predicting material behavior. It is calibrated and validated as a standalone model using flow stress and R-ratio data as well as iso-shear contours measured along several directions of the sheet through uniaxial and plane strain tension experiments. Furthermore, the particularities pertaining to cyclic response including non-linear unloading and the Bauschinger effect are also calibrated through large strain tension-compression data. Consistent with experimental measurements, the process simulations in finite elements predict directionally dependent thinning of the cup, especially around the punch radius and variation in the cup height around the rim of the cup, referred to as earing. By comparing experiments and predictions, role of the R-ratio is revealed as critical for the accurate prediction of the cup height. Further sensitivity analysis shows that initial texture has a strong influence on the R-ratio, while introducing a minor effect on hardening. The analysis into the choice of finite element types in terms of their accuracy and efficiency shows that the 3D 8 nodal elements (C3D8R) and continuum shell 3D 8 nodal elements (SC8R) are superior over the planar shell 3D 4 nodal elements (S4R) with the former being the most accurate and the latter being computationally efficient. It is demonstrated that the simulation framework presented in this paper can be used to predict phenomena pertaining to material behavior and resulting geometrical changes important for optimization of the sheet metal forming processes. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文介绍了针对钣金成形分析的多层仿真框架的实验验证。具体而言,使用嵌入隐式有限元中的基于物理的弹塑性自洽(EPSC)多晶均化模型对AA6022-T4合金薄板进行圆柱杯模拟的深冲,并进行实验验证。 EPSC模型在预测材料行为时考虑了在单晶水平上起作用的变形机制的微观结构和方向性。通过使用流应力和R比率数据以及通过单轴和平面应变拉伸实验沿板材几个方向测量的等剪轮廓,将其作为独立模型进行校准和验证。此外,与循环响应有关的特性,包括非线性卸载和包辛格效应,也通过大的应变张力-压缩数据进行了校准。与实验测量结果一致,有限元中的过程模拟可预测杯的方向性变薄,尤其是在冲头半径附近以及杯边缘周围的杯高度(称为耳边)变化方面。通过比较实验和预测,R比率的作用对于精确预测杯高至关重要。进一步的敏感性分析表明,初始纹理对R比率有很大影响,而对硬化的影响较小。对有限元类型选择的准确性和效率进行分析表明,3D 8节点元件(C3D8R)和连续壳3D 8节点元件(SC8R)优于平面壳3D 4节点元件(S4R)具有前者是最准确的,后者是计算效率高的。结果表明,本文介绍的仿真框架可用于预测与材料行为有关的现象以及由此产生的几何变化,这些变化对于优化钣金成形工艺非常重要。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号