首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An isotropic unstructured mesh generation method based on a fluid relaxation analogy
【24h】

An isotropic unstructured mesh generation method based on a fluid relaxation analogy

机译:基于流体松弛类比的各向同性非结构化网格生成方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an unstructured mesh generation method based on Lagrangian-particle fluid relaxation, imposing a global optimization strategy. With the presumption that the geometry can be described as a zero level set, an adaptive isotropic mesh is generated by three steps. First, three characteristic fields based on three modeling equations are computed to define the target mesh-vertex distribution, i.e. target feature-size function and density function. The modeling solutions are computed on a multi-resolution Cartesian background mesh. Second, with a target particle density and a local smoothing-length interpolated from the target field on the background mesh, a set of physically-motivated model equations is developed and solved by an adaptive-smoothing-length Smoothed Particle Hydrodynamics (SPH) method. The relaxed particle distribution conforms well with the target functions while maintaining isotropy and smoothness inherently. Third, a parallel fast Delaunay triangulation method is developed based on the observation that a set of neighboring particles generates a locally valid Voronoi diagram at the interior of the domain. The incompleteness of near domain boundaries is handled by enforcing a symmetry boundary condition. A set of two-dimensional test cases shows the feasibility of the method. Numerical results demonstrate that the proposed method produces high-quality globally optimized adaptive isotropic meshes even for high geometric complexity. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种基于拉格朗日粒子流体松弛的非结构化网格生成方法,施加全球优化策略。随着几何形状可以被描述为零水平集的推测,自适应各向同性网格由三个步骤产生。首先,计算基于三个建模方程的三个特征字段以定义目标网格顶点分布,即目标特征尺寸函数和密度函数。在多分辨率笛卡尔背景网格上计算建模解决方案。其次,具有目标粒子密度和从背景网上插入目标场的局部平滑长度,通过自适应平滑长度平滑的粒子流体动力学(SPH)方法开发和解决了一组物理动力的模型方程。轻松的颗粒分布符合目标功能,同时固有地保持各向同性和平滑度。第三,基于观察到一组相邻粒子在域内部产生局部有效的Voronoi图来开发并行快速Delaunay三角测量方法。通过实施对称边界条件来处理近域边界的不完整性。一组二维测试用例显示了该方法的可行性。数值结果表明,即使高几何复杂度,该方法也产生高质量全球优化的自适应各向同性网格。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号