首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An efficient solver for fully coupled solution of interaction between incompressible fluid flow and nanocomposite truncated conical shells
【24h】

An efficient solver for fully coupled solution of interaction between incompressible fluid flow and nanocomposite truncated conical shells

机译:一种有效的求解器,用于完全耦合的不可压缩流体流动与纳米复合截圆形壳体之间的相互作用溶液

获取原文
获取原文并翻译 | 示例

摘要

In this research, the dynamic instabilities of nanocomposite truncated conical shells containing a quiescent or a flowing inviscid fluid are scrutinized. Nonlinear dynamic equations are established according to the Novozhilov nonlinear shell theory along with Green's strains and Hamilton principle. The velocity potential and Bernoulli's equations are adopted to calculate fluid pressure acting on the conical shell. The nonlinear governing equations are discretized using trigonometric expansion through the circumferential direction and generalized differential quadrature method (GDQM) through the meridional direction. A detailed parametric study is directed to provide an insight into the influence of volume fraction of carbon nanotubes (CNTs), CNT dispersion, geometrical parameters, and boundary conditions on the divergence and flutter instabilities of nanocomposite truncated conical shells. This study shows the superb efficiency of the outlined solution procedure in reducing computational costs and virtual storage. The simulation indicates that the beginning of divergence and flutter instabilities can be significantly postponed by selecting an appropriate dispersion of CNTs through the thickness of the conical shell. Furthermore, the onset of flutter and divergence instabilities are found to be very sensitive to the semi-vertex angle and thickness-to-radius ratio. The results of this research shed light into using ultra-high-strength and low-weight nanocomposite for pressure vessels applications. (C) 2019 Elsevier B.V. All rights reserved.
机译:在该研究中,仔细检查了含有静止或流动的抗体流体的纳米复合截锥形壳的动态稳定性。根据Novozhilov非线性壳理论建立非线性动力学方程以及绿色的菌株和汉密尔顿原则。采用速度势和伯努利等式来计算作用在锥形壳体上的流体压力。非线性控制方程被通过圆周方向和广义差分正交方法(GDQM)通过圆周方向(GDQm)离散化。详细的参数研究旨在提供对碳纳米管(CNT),CNT分散,几何参数的体积分数的影响,对纳米复合材料截短的圆锥形壳体的发散和颤动不稳定性的影响。本研究表明,概述了概述的解决方案程序的优化效率降低了计算成本和虚拟存储。该模拟表明通过选择通过锥形壳的厚度选择CNT的适当分散来显着地推迟发散和颤动不稳定性的开始。此外,发现颤动和发散不稳定性的发作对半顶点角度和厚度到半径比非常敏感。该研究的结果揭示了使用超高强度和低重量的纳米复合材料进行压力容器应用。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号