首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Fast and efficient chemical process flowsheet simulation by pseudo-transient continuation on inertial manifolds
【24h】

Fast and efficient chemical process flowsheet simulation by pseudo-transient continuation on inertial manifolds

机译:快速高效的化学过程流程模拟惯性歧管伪瞬态延续

获取原文
获取原文并翻译 | 示例

摘要

Process flowsheets are mathematical models that describe the steady-state operation of (petro)chemical processes and comprise large-scale systems of nonlinear algebraic equations. The solution of these systems (referred to as "flowsheet simulation") is challenging for practically-relevant problems. Pseudo-transient continuation is a promising numerical approach for process flowsheet simulation, and has been shown to converge flowsheets reliably from a wider range of initial guesses compared to standard Newton-type methods. However, the pseudo-transient approach is more computationally demanding than flowsheet simulation with a Newton-type solver (assuming a good initial guess is available for the latter). Moreover, process flowsheet simulation with pseudo-transient continuation involves defining a set of dynamics in pseudo-time, and both convergence and computational efficiency can be highly dependent on the user-selected time constants that govern this dynamic behavior. In this work, we address these challenges with a novel algorithm for process flowsheet simulation based on a hierarchical, multiply-singularly perturbed formulation of pseudo-transient dynamics, and an associated cascade of quasi-steady-state assumptions. The algorithm replaces a subset of the differential equations of the reformulated model with algebraic quasi-steady-state conditions when the system approaches the inertial manifold defined by steady state of the respective dynamics. The proposed technique allows a seamless transition from pseudo-time integration to efficient algebraic solvers, and we prove that the method converges to the solution of the original algebraic system in a finite number of steps. Moreover, the time-scale decomposition of the pseudo-transient dynamics eliminates the need to explicitly set the time constants of the dynamics in each time scale. Using two prototype chemical process examples, we show that the proposed method significantly reduces the computational effort involved in pseudo-transient process flowsheet simulation. (C) 2019 Elsevier B.V. All rights reserved.
机译:过程流程是描述(Petro)化学过程的稳态操作的数学模型,包括大规模的非线性代数方程式。这些系统的解决方案(称为“Flowsheet仿真”)对实际相关问题有挑战性。伪瞬态继续是过程流程模拟的有希望的数值方法,并且已被证明与标准牛顿型方法相比,从更广泛的初始猜测中可靠地收敛流程。然而,伪瞬态方法比使用牛顿型解算器的流程模拟更加计算得多(假设后者可用的良好初步猜测)。此外,具有伪瞬态延续的过程流程模拟涉及在伪时定义一组动态,并且融合和计算效率都可以高度依赖于管理该动态行为的用户选择的时间常数。在这项工作中,我们通过基于伪瞬态动态的分层,乘法扰动的制定的过程流程模拟的新颖算法以及相关的准稳态假设的相关级联来解决这些挑战。当系统接近各个动态的稳态定义的惯性歧管时,该算法用代数准稳态条件替换重新定型模型的差分方程的子集。所提出的技术允许从伪时的整合到有效的代数求解器的无缝过渡,并且我们证明该方法将原始代数系统的解溶解在有限数量的步骤中。此外,伪瞬态动力学的时间级分解消除了在每次规模中明确地设置动态的时间常数。使用两个原型化学过程实施例,我们表明该方法显着降低了伪瞬态过程流程模拟所涉及的计算工作。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号