首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Fast and efficient chemical process flowsheet simulation by pseudo-transient continuation on inertial manifolds
【24h】

Fast and efficient chemical process flowsheet simulation by pseudo-transient continuation on inertial manifolds

机译:通过惯性流形上的伪瞬态连续快速高效地模拟化学过程流程图

获取原文
获取原文并翻译 | 示例

摘要

Process flowsheets are mathematical models that describe the steady-state operation of (petro)chemical processes and comprise large-scale systems of nonlinear algebraic equations. The solution of these systems (referred to as "flowsheet simulation") is challenging for practically-relevant problems. Pseudo-transient continuation is a promising numerical approach for process flowsheet simulation, and has been shown to converge flowsheets reliably from a wider range of initial guesses compared to standard Newton-type methods. However, the pseudo-transient approach is more computationally demanding than flowsheet simulation with a Newton-type solver (assuming a good initial guess is available for the latter). Moreover, process flowsheet simulation with pseudo-transient continuation involves defining a set of dynamics in pseudo-time, and both convergence and computational efficiency can be highly dependent on the user-selected time constants that govern this dynamic behavior. In this work, we address these challenges with a novel algorithm for process flowsheet simulation based on a hierarchical, multiply-singularly perturbed formulation of pseudo-transient dynamics, and an associated cascade of quasi-steady-state assumptions. The algorithm replaces a subset of the differential equations of the reformulated model with algebraic quasi-steady-state conditions when the system approaches the inertial manifold defined by steady state of the respective dynamics. The proposed technique allows a seamless transition from pseudo-time integration to efficient algebraic solvers, and we prove that the method converges to the solution of the original algebraic system in a finite number of steps. Moreover, the time-scale decomposition of the pseudo-transient dynamics eliminates the need to explicitly set the time constants of the dynamics in each time scale. Using two prototype chemical process examples, we show that the proposed method significantly reduces the computational effort involved in pseudo-transient process flowsheet simulation. (C) 2019 Elsevier B.V. All rights reserved.
机译:工艺流程图是描述(石油)化学工艺稳态运行的数学模型,并且包含非线性代数方程的大规模系统。这些系统的解决方案(称为“流程图模拟”)对于与实际相关的问题具有挑战性。伪瞬态连续是一种用于过程流程图模拟的有前途的数值方法,与标准的牛顿型方法相比,伪瞬态连续已显示可从更广泛的初始猜测中可靠地收敛流程图。但是,伪瞬态方法比使用牛顿型求解器的流程图模拟对计算的要求更高(假定对于后者,可以使用良好的初始猜测)。此外,具有伪瞬态连续性的过程流程图模拟涉及在伪时间内定义一组动力学,并且收敛性和计算效率都可以高度依赖于控制该动力学行为的用户选择的时间常数。在这项工作中,我们使用一种新颖的算法来应对这些挑战,该算法基于伪瞬态动力学的分层,多重奇异摄动公式以及相关的准稳态假设级联,用于过程流程图模拟。当系统接近由各个动力学的​​稳态定义的惯性流形时,该算法用代数拟稳态条件替换了重新制定的模型的微分方程的子集。所提出的技术允许从伪时间积分到有效的代数求解器的无缝过渡,并且我们证明了该方法在有限数量的步骤中收敛于原始代数系统的解。此外,伪瞬态动力学的时间尺度分解消除了在每个时间尺度上显式设置动力学的时间常数的需要。使用两个原型化学过程示例,我们证明了所提出的方法显着减少了伪瞬态过程流程图模拟中涉及的计算量。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号