首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An algorithm for adaptive introduction and arrangement of velocity discontinuities within 3D finite-element-based upper bound limit analysis approaches
【24h】

An algorithm for adaptive introduction and arrangement of velocity discontinuities within 3D finite-element-based upper bound limit analysis approaches

机译:基于3D有限元的上限分析方法3D中的自适应介绍和排列速度不连续的算法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new adaptive strategy to efficiently exploit velocity discontinuities in 3D finite-element-based upper bound limit analysis formulations. Based on an initial upper bound result, obtained with a conventional approach without velocity discontinuities, possible planes of plastic flow localisation are determined at each strain-rate evaluation node and, subsequently, this information is used to sequentially introduce discontinuities into the considered discretised structure. During a few iterations, by means of introducing new and adjusting existing discontinuities, an optimal velocity discontinuity layout is obtained. For the general 3D case, the geometry of this layout is defined by the well-known level set method, standardly used to define the geometry of cracks in the extended finite element method.To make this method also applicable for orthotropic strength behaviours, traction-based yield functions defining the plastic flow across discontinuities are derived from their stress-based counterparts. This procedure is outlined in detail and the obtained traction-based yield functions are verified numerically, to guarantee a consistent strength behaviour throughout the whole discretised structure.By means of three different examples, including isotropic as well as orthotropic yield functions, the performance of the proposed strategy is investigated and upper bound results as well as failure modes are compared to reference solutions. The proposed approach delivers reliable upper bounds for each example and the majority of plastic flow takes place across the sensibly-arranged discontinuities. For this reason, very good upper bounds can be obtained with a quite coarse finite element mesh and only few introduced velocity discontinuities. This represents an attractive alternative to commonly-used adaptive mesh refinement strategies, where often a huge number of degrees of freedom need to be added to capture localised failure. (C) 2018 Elsevier B.V. All rights reserved.
机译:本文提出了一种新的自适应策略,以有效利用基于3D有限元的上限分析配方中的3D有限元的速度不连续性。基于以常规方法获得的初始上限结果,在没有速度不连续的情况下获得的,在每个应变速率评估节点处确定塑性流定位的可能平面,随后,该信息用于顺序地将不连续性引入所考虑的离散结构。在几个迭代期间,通过引入新的和调整现有的不连续性,获得最佳的速度不连续布局。对于一般的3D情况,该布局的几何形状由众所周知的水平集法定义,标准用于在延长的有限元方法中定义裂缝的几何形状。使该方法也适用于正交强度行为,牵引 - 基于产量函数定义跨越不连续性的塑性流量来自于基于应力的对应物。详细概述了该方法,并且在数值上验证了所获得的牵引产率函数,以保证整个离散的结构一致的强度行为。在三种不同的例子中,包括各向同性和正交产量功能,性能拟议的策略是调查的,并与参考解决方案进行比较上限结果以及失效模式。所提出的方法为每个示例提供可靠的上限,并且大多数塑料流动发生在可明智的不连续性上。因此,通过相当粗略的有限元网格可以获得非常好的上限,并且仅引入速度不连续性。这代表了普通使用的自适应网格细化策略的有吸引力的替代方案,通常需要添加大量的自由度来捕获局部故障。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号