首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A fully partitioned Lagrangian framework for FSI problems characterized by free surfaces, large solid deformations and displacements, and strong added-mass effects
【24h】

A fully partitioned Lagrangian framework for FSI problems characterized by free surfaces, large solid deformations and displacements, and strong added-mass effects

机译:一个完全分区的拉格朗日框架,用于FSI问题,其特征在于自由表面,大型固体变形和位移,以及强大的增加效果

获取原文
获取原文并翻译 | 示例

摘要

In this work a fully partitioned Lagrangian framework for the solution of fluid-structure interaction (FSI) problems involving free surfaces, large solid displacements and deformations, and strong added mass effects is presented. The fluid is simulated using the Particle Finite Element Method (PFEM), while Metafor, a large deformations nonlinear Finite Element code, is employed to simulate the solid part. The fully partitioned coupling is ensured through an Interface Quasi-Newton Inverse Least Squares (IQN-ILS) (Degroote et al., 2009) strategy to avoid added mass effects. The Lagrangian particle nature of the PFEM allows the simulation of problems involving free surfaces and very large solid displacements, usually difficult to achieve with traditional body-fitted CFD techniques. We show that owing to the generality of its formulation the PFEM can be used as is in the framework of fully partitioned FSI coupling schemes, where minimal information (i.e. loads and displacements at the FSI interface) is exchanged between the fluid and the solid solvers. More importantly, we demonstrate that a fully partitioned PFEM-FEM coupling based on the IQN-ILS strategy allows the simulation of a very large spectrum of FSI problems without incurring added-mass instabilities. The performance of the IQN-ILS coupling strategy in a fully Lagrangian framework is also assessed and compared to more traditional approaches such as Block-Gauss-Seidel (BGS) iterations with Aitken relaxation. An extensive work of verification and benchmarking is proposed, aiming to encompass all the combinations of physical and numerical parameters possibly leading to added-mass instabilities, and testing the IQN-ILS strategy on different benchmarks beyond those already proposed in the literature. The coupling is performed through CUPyDO (Thomas et al., 2019), a general Python framework for partitioned FSI coupling. (C) 2019 Elsevier B.V. All rights reserved.
机译:在这项工作中,介绍了一种完全分区的拉格朗日框架,用于解决涉及自由表面,大型固体置换和变形的涉及的流体结构相互作用(FSI)问题和强烈的额外效果。使用颗粒有限元法(PFEM)模拟流体,而Metafor是一种大变形非线性有限元码,用于模拟固体部分。通过界面准牛顿逆量(IQN-ILS)(IQN-ILS)(DigOOTE等,2009)策略来确保完全分区耦合,以避免增加大规模效果。 PFEM的拉格朗日粒子本质允许模拟涉及自由表面和非常大的固体位移的问题,通常难以实现传统的身体CFD技术。我们表明,由于其制剂的一般性,PFEM可以用作完全分区的FSI耦合方案的框架中,其中在流体和固体溶剂之间交换最小的信息(即,FSI接口的负载和位移)。更重要的是,我们证明基于IQN-ILS策略的完全分区的PFEM-FEM耦合允许模拟在没有产生的增加的质量不稳定性的情况下模拟非常大的FSI问题。还评估了IQN-ILS耦合策略在完全拉格朗日框架中的表现,并与更多传统方法相比,如块-Gauss-Seidel(BGS)迭代,与Aitken放松。提出了广泛的验证和基准测试,旨在包含可能导致大规模不稳定的物理和数值参数的所有组合,并在文献中已经提出的不同基准测试的IQN-ILS战略。耦合通过CUPYDO(Thomas等,2019),是用于分区FSI耦合的一般Python框架。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号