首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A fully partitioned Lagrangian framework for FSI problems characterized by free surfaces, large solid deformations and displacements, and strong added-mass effects
【24h】

A fully partitioned Lagrangian framework for FSI problems characterized by free surfaces, large solid deformations and displacements, and strong added-mass effects

机译:完全分区的拉格朗日框架,用于FSI问题,具有自由表面,较大的固体变形和位移以及强大的附加质量效应

获取原文
获取原文并翻译 | 示例

摘要

In this work a fully partitioned Lagrangian framework for the solution of fluid-structure interaction (FSI) problems involving free surfaces, large solid displacements and deformations, and strong added mass effects is presented. The fluid is simulated using the Particle Finite Element Method (PFEM), while Metafor, a large deformations nonlinear Finite Element code, is employed to simulate the solid part. The fully partitioned coupling is ensured through an Interface Quasi-Newton Inverse Least Squares (IQN-ILS) (Degroote et al., 2009) strategy to avoid added mass effects. The Lagrangian particle nature of the PFEM allows the simulation of problems involving free surfaces and very large solid displacements, usually difficult to achieve with traditional body-fitted CFD techniques. We show that owing to the generality of its formulation the PFEM can be used as is in the framework of fully partitioned FSI coupling schemes, where minimal information (i.e. loads and displacements at the FSI interface) is exchanged between the fluid and the solid solvers. More importantly, we demonstrate that a fully partitioned PFEM-FEM coupling based on the IQN-ILS strategy allows the simulation of a very large spectrum of FSI problems without incurring added-mass instabilities. The performance of the IQN-ILS coupling strategy in a fully Lagrangian framework is also assessed and compared to more traditional approaches such as Block-Gauss-Seidel (BGS) iterations with Aitken relaxation. An extensive work of verification and benchmarking is proposed, aiming to encompass all the combinations of physical and numerical parameters possibly leading to added-mass instabilities, and testing the IQN-ILS strategy on different benchmarks beyond those already proposed in the literature. The coupling is performed through CUPyDO (Thomas et al., 2019), a general Python framework for partitioned FSI coupling. (C) 2019 Elsevier B.V. All rights reserved.
机译:在这项工作中,提出了一种完全分区的拉格朗日框架,用于解决涉及自由表面,大的固体位移和变形以及强大的附加质量效应的流固耦合问题。使用粒子有限元方法(PFEM)模拟流体,同时使用Metafor(大变形非线性有限元代码)模拟实体零件。通过接口准牛顿逆最小二乘(IQN-ILS)(Degroote et al。,2009)策略可确保完全分区的耦合,以避免增加质量效应。 PFEM的拉格朗日粒子性质允许模拟涉及自由表面和非常大的固体位移的问题,这通常是传统的人体CFD技术难以实现的。我们表明,由于其公式的通用性,PFEM可以像在完全分区的FSI耦合方案的框架中一样使用,其中在流体和固体求解器之间交换最少的信息(即FSI接口处的载荷和位移)。更重要的是,我们证明了基于IQN-ILS策略的完全分区的PFEM-FEM耦合可以模拟很大范围的FSI问题,而不会引起附加质量不稳定。还评估了IQN-ILS耦合策略在完全拉格朗日框架中的性能,并将其与更传统的方法(例如带有Aitken松弛的块高斯-赛德尔(BGS)迭代)进行比较。提出了广泛的验证和基准测试工作,旨在涵盖可能导致附加质量不稳定性的物理参数和数值参数的所有组合,并在文献中已经提出的不同基准上测试IQN-ILS策略。耦合通过CUPyDO(Thomas等人,2019)执行,这是用于分区FSI耦合的通用Python框架。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号