首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Adaptive kriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables
【24h】

Adaptive kriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables

机译:基于自适应克里格法的多失效模式混合变量结构系统高效可靠性方法

获取原文
获取原文并翻译 | 示例

摘要

The reliability analysis of structural systems with multiple failure modes and mixed variables is a critical problem because of complex nonlinear correlations among failure modes (or components), huge computational burden of time-consuming implicit functions, and complex failure regions. In this paper, aleatory and epistemic uncertainties are considered simultaneously, and an efficient adaptive kriging-based reliability method is proposed for structural systems with multiple failure modes and mixed variables. Two new learning functions are developed as guidelines for selecting new training samples at each iteration. The proposed learning functions and corresponding stopping criteria are directly linked to system probability of failure; this allows the proposed method to select new training samples efficiently To determine the lower and upper bounds of system probability of failure, the limit-state functions in the entire uncertainty space of interest are accurately constructed while avoiding complicated nested optimizations. The proposed method has the following advantages: (1) the learning functions and stopping criteria are directly linked to system probability of failure, and the structure importance of components is also considered; (2) it requires fewer samples to achieve accurate results, and can be applied to small system probability of failure; (3) it is easy to use for extremely complex systems (e.g., bridge systems); (4) it can be applied to a system with multiple failure modes and mixed variables (e.g., mixture of random and p-box variables). The capabilities and efficiency of the proposed method are validated through four numerical examples; results show that it has high applicability and accuracy. (C) 2019 Elsevier B.V. All rights reserved.
机译:具有多个故障模式和混合变量的结构系统的可靠性分析是一个关键问题,因为故障模式(或部件)之间存在复杂的非线性关联,耗时的隐式函数具有巨大的计算负担,并且故障区域复杂。本文同时考虑了不确定性和认知方面的不确定性,针对具有多个失效模式和混合变量的结构系统,提出了一种有效的基于自适应克里金法的可靠性方法。开发了两个新的学习功能,作为在每次迭代中选择新训练样本的准则。所提出的学习功能和相应的停止标准与系统故障的可能性直接相关;这使得所提出的方法能够有效地选择新的训练样本。为了确定系统故障概率的上下限,可以在避免复杂的嵌套优化的情况下,准确构建整个目标不确定空间中的极限状态函数。该方法具有以下优点:(1)学习功能和停止准则与系统故障概率直接相关,并考虑了构件的结构重要性; (2)需要较少的样本才能获得准确的结果,并且可以应用于系统发生故障的小概率; (3)易于用于极其复杂的系统(例如,桥梁系统); (4)它可以应用于具有多个故障模式和混合变量(例如,随机变量和p-box变量的混合)的系统。通过四个数值例子验证了该方法的能力和效率。结果表明,该算法具有较高的适用性和准确性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号