首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An adaptive hp-refinement strategy with inexact solvers and computable guaranteed bound on the error reduction factor
【24h】

An adaptive hp-refinement strategy with inexact solvers and computable guaranteed bound on the error reduction factor

机译:具有不精确求解器和误差减小因子可计算保证边界的自适应hp细化策略

获取原文
获取原文并翻译 | 示例
           

摘要

In this work we extend our recently proposed adaptive refinement strategy for hp-finite element approximations of elliptic problems by taking into account an inexact algebraic solver. Namely, on each level of refinement and on each iteration of an (arbitrary) iterative algebraic solver, we compute guaranteed a posteriori error bounds on the algebraic and the total errors in energy norm. The algebraic error is the difference between the inexact discrete solution obtained by an iterative algebraic solver and the (unavailable) exact discrete solution. On the other hand, the total error stands for the difference between the inexact discrete solution and the (unavailable) exact solution of the partial differential equation. For the algebraic error upper bound, we crucially exploit the whole nested hierarchy of hp-finite element spaces created by the adaptive algorithm, whereas the remaining parts of the total error upper and lower bounds are computed using the finest space only. These error bounds allow us to formulate adaptive stopping criteria for the algebraic solver ensuring that the algebraic error does not significantly contribute to the total error. Next, we use the total error bound to mark mesh vertices for refinement via Dorfler's bulk-chasing criterion. On patches associated with marked vertices only, we solve two separate primal finite element problems with homogeneous Dirichlet (Neumann) boundary conditions, which serve to decide between h-, p-, or hp-refinement. Altogether, we show that these ingredients lead to a computable guaranteed bound on the ratio of the total errors of the inexact approximations between successive refinements (the error reduction factor), when the stopping criteria are satisfied. Finally, in a series of numerical experiments, we investigate the practicality of the proposed adaptive solver, the accuracy of our bound on the reduction factor, and show that exponential convergence rates are achieved even in the presence of an inexact algebraic solver. (C) 2019 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们通过考虑不精确的代数求解器,扩展了我们最近提出的针对椭圆问题的hp有限元逼近的自适应细化策略。即,在(任意)迭代代数求解器的每个细化级别和每个迭代中,我们计算代数和能量范数的总误差的有保证的后验误差界。代数误差是由迭代代数求解器获得的不精确离散解与(不可用)精确离散解之间的差。另一方面,总误差代表偏微分方程的不精确离散解和(不可用)精确解之间的差。对于代数误差上限,我们至关重要地利用了自适应算法创建的hp有限元素空间的整个嵌套层次结构,而总误差上下限的其余部分仅使用最佳空间来计算。这些误差范围使我们能够为代数求解器制定自适应停止准则,以确保代数误差不会对总误差产生重大影响。接下来,我们使用总误差来标记网格顶点,以通过Dorfler的批量购买标准进行细化。在仅与标记顶点相关的面片上,我们用齐次Dirichlet(Neumann)边界条件解决两个单独的原始有限元问题,这些条件可用于确定h,p或hp细化。总而言之,当满足停止标准时,我们证明了这些成分导致连续精炼之间不精确近似的总误差比(误差减少因子)上的可计算保证界限。最后,在一系列数值实验中,我们研究了所提出的自适应解算器的实用性,缩减因子上界的精度,并表明即使存在不精确的代数解算器也能实现指数收敛速度。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号