首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries
【24h】

Numerical technique for the 3D microarchitecture design of elastic composites inspired by crystal symmetries

机译:受晶体对称性启发的弹性复合材料3D微结构设计的数值技术

获取原文
获取原文并翻译 | 示例

摘要

A numerical methodology developed for the microarchitecture design of 3D elastic two-phase periodic composites with effective isotropic properties close to the theoretical bounds is here presented and analyzed. This methodology is formulated as a topology optimization problem and is implemented using a level-set approach jointly with topological derivative.The most salient characteristic of this methodology is the imposition of preestablished crystal symmetries to the designed topologies; we integrate a topological optimization formulation with crystal symmetries to design mechanical metamaterials.The computational homogenization of the composite elastic properties is determined using a Fast Fourier Transform (FFT) technique. Due to the design domains are the primitive cells of Bravais lattices compatible with the space group imposed to the material layout, we have adapted the FFT technique to compute the effective properties in 3D parallelepiped domains.In this work, to find the topologies satisfying the proposed targets, we test four space groups of the cubic crystal system. Thus, the achievement of composites with effective elasticity tensor having cubic symmetry is guaranteed, and the isotropic response is then enforced by adding only one scalar constraint to the topology optimization problem.To assess the methodology, the following microarchitectures are designed and reported: two auxetic composites, three pentamode materials, and one maximum stiffness composite. With only one exception, all the remaining topologies display effective elastic properties with Zener coefficients approximating to 1. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文介绍并分析了为有效各向同性特性接近理论界限的3D弹性两相周期复合材料的微体系结构设计开发的数值方法。该方法论被公式化为拓扑优化问题,并使用能级集方法与拓扑导数共同实施。该方法论的最显着特征是,将预先建立的晶体对称性强加给设计的拓扑学。我们将具有晶体对称性的拓扑优化公式集成在一起,以设计机械超材料。使用快速傅立叶变换(FFT)技术确定复合材料弹性性能的计算均匀性。由于设计域是Bravais晶格的原始单元格与施加于材料布局的空间组兼容,因此我们采用FFT技术来计算3D平行六面体域的有效属性。在这项工作中,找到了满足所提议拓扑的拓扑我们测试了立方晶体系统的四个空间组。因此,保证了具有有效弹性张量的具有立方对称性的复合材料的实现,然后通过仅向拓扑优化问题中添加一个标量约束来强制各向同性响应。为评估该方法,设计并报告了以下微体系结构:两种辅助结构复合材料,三种五模态材料和一种最大刚度复合材料。除一个例外,其余所有拓扑均显示有效的弹性特性,齐纳系数约为1.(C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号