首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A micro-potential based Peridynamic method for deformation and fracturing in solids: A two-dimensional formulation
【24h】

A micro-potential based Peridynamic method for deformation and fracturing in solids: A two-dimensional formulation

机译:基于微势的固体变形和压裂的Peridynamic方法:二维公式

获取原文
获取原文并翻译 | 示例

摘要

A two-dimensional micro-potential based Peridynamic (MPPD) formulation is proposed to investigate deformation and fracturing in solid materials. To this end, square measure of the bond length change is applied and a generalized Peridynamic (PD) strain for plane stress and strain problems is developed to decompose the bond length change into two parts, one resulting from the volumetric PD strain and the other from the deviatoric PD strain. The micro-potential generated in the deformed bond is postulated as a function of both length change components. The nonlocal elastic strain energy density (NESED) at a material point is computed by the integral of the bond potential over the horizon. Through the Frechet derivative of the NESED, a general constitutive relation depending on the micro-potential function is well formulated. The model parameters are calibrated through the equivalence of the NESED with the linear elastic strain energy density. Several specific micro-potential functions and their corresponding constitutive force densities are carefully discussed. The discussions reveal that the proposed MPPD model not only can retrieve the well-known bond based PD model, but also allows specific materials with any Poisson ratio to be represented. Moreover, one failure criterion based on the total micro-bond potential is developed for the present model. The reliability and efficiency of the MPPD model is demonstrated through numerical tests. Simulation results show that the proposed model is capable of investigating deformation and cracking in solids. (C) 2019 Elsevier B.V. All rights reserved.
机译:提出了一种基于二维微电势的周向动力(MPPD)公式,以研究固体材料中的变形和断裂。为此,应用了键长变化的平方度量,并针对平面应力和应变问题开发了广义的蠕变(PD)应变,以将键长变化分解为两部分,一个是由体积PD应变引起的,另一个是由体积PD应变引起的。偏PD应变。假定在变形键中产生的微电势是两个长度变化分量的函数。物质点处的非局部弹性应变能密度(NESED)通过水平方向上的键势积分来计算。通过NESED的Frechet导数,可以很好地表达取决于微电势函数的一般本构关系。通过将NESED与线性弹性应变能密度等价来校准模型参数。仔细讨论了几种特定的微电势函数及其相应的本构密度。讨论表明,提出的MPPD模型不仅可以检索众所周知的基于键的PD模型,而且还可以表示具有任何泊松比的特定材料。此外,针对本模型开发了一种基于总微键电位的失效准则。通过数值测试证明了MPPD模型的可靠性和效率。仿真结果表明,所提出的模型能够研究固体的变形和裂纹。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号