首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A machine-learning framework for rapid adaptive digital-twin based fire-propagation simulation in complex environments
【24h】

A machine-learning framework for rapid adaptive digital-twin based fire-propagation simulation in complex environments

机译:复杂环境中基于数字孪生的快速自适应火传播仿真的机器学习框架

获取原文
获取原文并翻译 | 示例

摘要

The objective of this work is to illustrate how to algorithmically integrate Machine-Learning Algorithms (MLA's) with multistage/multicomponent fire spread models. In order to tangibly illustrate this process, this work develops a framework for a specific model problem combining: (I) a meshless discrete element "submodel" that tracks the trajectory of airborne hot particles/embers, subject to prevailing wind velocities and updrafts, (II) a topographical "submodel" of the ambient combustible material whereby airborne embers that make contact are allowed to start secondary fires (if conditions are appropriate), combined with ground-based surface spread and burn rates for generating new embers, new updrafts (due to hot air), etc., and (III) a Machine-Learning Algorithm to rapidly ascertain the multi-submodel system parameters that force the overall model to match observations. The submodels compute both ground and airborne hot-ember driven fire propagation, as well as subsequent distribution of debris/soot, which is important for air-quality assessment. The overall framework is designed for use in digital twin technology, which refers to an adaptive digital replica of a physical system, whereby model updates are continuously in near real-time. This necessitates a rapid simulation paradigm that can easily interface with telecommunications, cameras and sensors. The presented framework is designed to run quickly on laptops and hand held devices, with the guiding principle being to make it potentially useful for first-responders in real-time. (C) 2020 Elsevier B.V. All rights reserved.
机译:这项工作的目的是说明如何在算法上将机器学习算法(MLA)与多阶段/多组件火灾蔓延模型进行集成。为了清楚地说明这一过程,这项工作开发了一个针对特定模型问题的框架,该框架结合了以下内容:(I)无网格离散元素“子模型”,该子模型跟踪受空气传播的热粒子/灰烬的轨迹,并受到主要风速和上升气流的影响,( II)周围可燃物质的地形“子模型”,使接触的空中灰烬可以开始二次燃烧(如果条件允许的话),结合地面产生的地面蔓延和燃烧速率,以产生新的余烬,新的上升气流(由于(III)一种机器学习算法,以快速确定迫使整个模型与观测值匹配的多子模型系统参数。子模型计算地面和空中热灰烬引起的火势蔓延,以及随后的碎屑/烟灰分布,这对于空气质量评估很重要。总体框架旨在用于数字孪生技术,该技术是指物理系统的自适应数字副本,由此模型更新几乎实时地连续进行。这就需要一种快速的仿真范例,该范例可以轻松地与电信,相机和传感器对接。提出的框架旨在在笔记本电脑和手持设备上快速运行,其指导原则是使其对于实时的第一响应者很有用。 (C)2020 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号